There has been a trend away from surgical therapy for hypopharyngeal SCC. In contrast to laryngeal cancer, survival for hypopharyngeal cancer has improved since 1990.
This study reviews the cochlear histology from four hearing preservation cochlear implantation experiments conducted on 73 guinea pigs from our institution, and relates histopathological findings to residual hearing. All guinea pigs had normal hearing prior to surgery and underwent cochlear implantation via a cochleostomy with a silastic-platinum dummy electrode. Pure tone auditory brainstem response (ABR) thresholds from 2 to 32 kHz were recorded prior to surgery, and at one and four weeks postoperatively. The cochleae were then fixed in paraformaldehyde, decalcified, paraffin embedded, and mid-modiolar sections were prepared. The treatment groups were as follows: 1) Systemic dexamethasone, 0.2 mg/kg administered 1 h before implantation, 2) Local dexamethasone, 2% applied topically to the round window for 30 min prior to cochlear implantation, 3) Local n-acetyl cysteine, 200 μg applied topically to the round window for 30 min prior to implantation, 4) inoculation to keyhole-limpet hemocyanin (KLH) prior to implantation, and 5) untreated controls. There was a significant correlation between the extent of the tissue reaction in the cochlea and the presence of foreign body giant cells (FBGCs), new bone formation and injury to the osseous spiral lamina (OSL). The extent of the tissue response, as a percentage of the area of the scala tympani, limited the best hearing that was observed four weeks after cochlear implantation. Poorer hearing at four weeks correlated with a more extensive tissue response, lower outer hair cell (OHC) counts and OSL injury in the basal turn. Progressive hearing loss was also correlated with the extent of tissue response. Hearing at 2 kHz, which corresponds to the region of the second cochlear turn, did not correspond with loco-regional inner hair cell (IHC), OHC or SGC counts. We conclude that cochlear injury is associated with poorer hearing early after implantation. The tissue response is related to indices of cochlear inflammation and injury. An extensive tissue response limits hearing at four weeks, and correlates with progressive hearing loss. These latter effects may be due to inflammation, but would also be consistent with interference of cochlear mechanics.
Background: There is experimental evidence that targeted delivery of steroids to the inner ear can protect hearing during cochlear implant surgery. The best protection appears to be achieved through pre-treatment of the cochlea, but the time period required for treatment is long compared with the duration of surgery, and needs further optimization. The stability of hearing thresholds is determined over a 3-month period after hearing preservation cochlear implantation. Methods: Adult guinea pigs were implanted with a miniature cochlear implant electrode, and pure tone auditory brainstem response (ABR) thresholds were estimated in response to pure tones of 2–32 kHz immediately after surgery and at 1 week, 1 month and 3 months. Spiral ganglion cell (SGC) densities were estimated from mid-modular histological sections of the cochlea. Thirty minutes prior to implantation, a polymeric sponge (SeprapackTM, Genzyme) was loaded with either a 2% solution of dexamethasone phosphate or normal saline (control) and placed onto the round window. Results: Implantation was associated with an immediate elevation in thresholds across frequencies, with a full recovery below 2 kHz over the next week and a partial recovery of thresholds at higher frequencies. These thresholds remained unchanged for the next 3 months. There was an immediate and sustained reduction in the elevation of thresholds at 32 kHz in dexamethasone-treated animals. SGC densities were greater in steroid-treated animals than controls in the basal turn of the cochlea (at the region of implantation) 3 months after implantation. Conclusion: It is concluded that ABR thresholds remain stable for 3 months after cochlear implantation in the guinea pig, and that local application of steroids to the inner ear prior to implantation is an effective method of preserving SGC populations when there is residual hearing at the time of implantation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.