Unlike other tumors, the anatomical extent of brain tumors is not objectified and quantified through staging. Staging systems are based on understanding the anatomical sequence of tumor progression and its relationship to histopathological dedifferentiation and survival. The aim of this study was to describe the spatiotemporal phenotype of the most frequent brain tumor entities, to assess the association of anatomical tumor features with survival probability and to develop a staging system for WHO grade 2 and 3 gliomas and glioblastoma. Anatomical phenotyping was performed on a consecutive cohort of 1000 patients with first diagnosis of a primary or secondary brain tumor. Tumor probability in different topographic, phylogenetic and ontogenetic parcellation units was assessed on preoperative MRI through normalization of the relative tumor prevalence to the relative volume of the respective structure. We analyzed the spatiotemporal tumor dynamics by cross-referencing preoperative against preceding and subsequent MRIs of the respective patient. The association between anatomical phenotype and outcome defined prognostically critical anatomical tumor features at diagnosis. Based on a hypothesized sequence of anatomical tumor progression, we developed a three-level staging system for WHO grade 2 and 3 gliomas and glioblastoma. This staging system was validated internally in the original cohort and externally in an independent cohort of 300 consecutive patients. While primary central nervous system lymphoma showed highest probability along white matter tracts, metastases enriched along terminal arterial flow areas. Neuroepithelial tumors mapped along all sectors of the ventriculocortical axis, while adjacent units were spared, consistent with a transpallial behavior within phylo-ontogenetic radial units. Their topographic pattern correlated with morphogenetic processes of convergence and divergence of radial units during phylo- and ontogenesis. While a ventriculofugal growth dominated in neuroepithelial tumors, a gradual deviation from this neuroepithelial spatiotemporal behavior was found with progressive histopathological dedifferentiation. The proposed three-level staging system for WHO grade 2 and 3 gliomas and glioblastoma correlated with the degree of histological dedifferentiation and proved accurate in terms of survival upon both internal and external validation. In conclusion, this study identified specific spatiotemporal phenotypes in brain tumors through topographic probability and growth pattern assessment. The association of anatomical tumor features with survival defined critical steps in the anatomical sequence of neuroepithelial tumor progression, based on which a staging system for WHO grade 2 and 3 gliomas and glioblastoma was developed and validated.
Due to convincing short-term clinical results and advantages of minimally invasive surgery, arthroscopic treatment of anterior and anterosuperior rotator cuff tears has become prevalent. Treatment of concomitant LBS tendon pathology seems to play an important role in most patients. Further development of refixation techniques and better means of visualization will increase the trend towards arthroscopic treatment of anterosuperior rotator cuff tears in the future.
Intraoperative MRI (ioMRI) has become a frequently used tool to improve maximum safe resection in brain tumor surgery. The usability of intraoperatively acquired diffusion-weighted imaging sequences to predict the extent and clinical relevance of new infarcts has not yet been studied. Furthermore, the question of whether more aggressive surgery after ioMRI leads to more or larger infarcts is of crucial interest for the surgeons’ operative strategy. Retrospective single-center analysis of a prospective registry of procedures from 2013 to 2019 with ioMRI was used. Infarct volumes in ioMRI/poMRI, lesion localization, mRS, and NIHSS were analyzed for each case. A total of 177 individual operations (60% male, mean age 45.5 years old) met the inclusion criteria. In 61% of the procedures, additional resection was performed after ioMRI, which resulted in a significantly higher number of new ischemic lesions postoperatively (p < .001). The development of new or enlarged ischemic areas upon additional resection could also be shown volumetrically (mean volume in ioMRI 0.39 cm3 vs. poMRI 2.97 cm3; p < .001). Despite the surgically induced new infarcts, mRS and NIHSS did not worsen significantly in cases with additional resection. Additionally, new perilesional ischemia in eloquently located tumors was not associated with an impaired neurological outcome. Additional resection after ioMRI leads to new or enlarged ischemic areas. However, these new infarcts do not necessarily result in an impaired neurological outcome, even when in eloquent brain areas.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.