Rumors and conspiracy theories thrive in environments of low confi- dence and low trust. Consequently, it is not surprising that ones related to the Covid-19 pandemic are proliferating given the lack of scientific consensus on the virus’s spread and containment, or on the long term social and economic ramifications of the pandemic. Among the stories currently circulating are ones suggesting that the 5G telecommunication network activates the virus, that the pandemic is a hoax perpetrated by a global cabal, that the virus is a bio-weapon released deliberately by the Chinese, or that Bill Gates is using it as cover to launch a broad vaccination program to facilitate a global surveillance regime. While some may be quick to dismiss these stories as having little impact on real-world behavior, recent events including the destruction of cell phone towers, racially fueled attacks against Asian Americans, demonstrations espousing resistance to public health orders, and wide-scale defiance of scientifically sound public mandates such as those to wear masks and practice social distancing, countermand such conclusions. Inspired by narrative theory, we crawl social media sites and news reports and, through the application of automated machine-learning methods, discover the underlying narrative frame- works supporting the generation of rumors and conspiracy theories. We show how the various narrative frameworks fueling these stories rely on the alignment of otherwise disparate domains of knowledge, and consider how they attach to the broader reporting on the pandemic. These alignments and attachments, which can be monitored in near real-time, may be useful for identifying areas in the news that are particularly vulnerable to reinterpretation by conspiracy theorists. Understanding the dynamics of storytelling on social media and the narrative frameworks that provide the generative basis for these stories may also be helpful for devising methods to disrupt their spread.
Rumors and conspiracy theories thrive in environments of low confidence and low trust. Consequently, it is not surprising that ones related to the COVID-19 pandemic are proliferating given the lack of scientific consensus on the virus’s spread and containment, or on the long-term social and economic ramifications of the pandemic. Among the stories currently circulating in US-focused social media forums are ones suggesting that the 5G telecommunication network activates the virus, that the pandemic is a hoax perpetrated by a global cabal, that the virus is a bio-weapon released deliberately by the Chinese, or that Bill Gates is using it as cover to launch a broad vaccination program to facilitate a global surveillance regime. While some may be quick to dismiss these stories as having little impact on real-world behavior, recent events including the destruction of cell phone towers, racially fueled attacks against Asian Americans, demonstrations espousing resistance to public health orders, and wide-scale defiance of scientifically sound public mandates such as those to wear masks and practice social distancing, countermand such conclusions. Inspired by narrative theory, we crawl social media sites and news reports and, through the application of automated machine-learning methods, discover the underlying narrative frameworks supporting the generation of rumors and conspiracy theories. We show how the various narrative frameworks fueling these stories rely on the alignment of otherwise disparate domains of knowledge, and consider how they attach to the broader reporting on the pandemic. These alignments and attachments, which can be monitored in near real time, may be useful for identifying areas in the news that are particularly vulnerable to reinterpretation by conspiracy theorists. Understanding the dynamics of storytelling on social media and the narrative frameworks that provide the generative basis for these stories may also be helpful for devising methods to disrupt their spread.
BackgroundSocial media offer an unprecedented opportunity to explore how people talk about health care at a very large scale. Numerous studies have shown the importance of websites with user forums for people seeking information related to health. Parents turn to some of these sites, colloquially referred to as “mommy blogs,” to share concerns about children’s health care, including vaccination. Although substantial work has considered the role of social media, particularly Twitter, in discussions of vaccination and other health care–related issues, there has been little work on describing the underlying structure of these discussions and the role of persuasive storytelling, particularly on sites with no limits on post length. Understanding the role of persuasive storytelling at Internet scale provides useful insight into how people discuss vaccinations, including exemption-seeking behavior, which has been tied to a recent diminution of herd immunity in some communities.ObjectiveTo develop an automated and scalable machine-learning method for story aggregation on social media sites dedicated to discussions of parenting. We wanted to discover the aggregate narrative frameworks to which individuals, through their exchange of experiences and commentary, contribute over time in a particular topic domain. We also wanted to characterize temporal trends in these narrative frameworks on the sites over the study period.MethodsTo ensure that our data capture long-term discussions and not short-term reactions to recent events, we developed a dataset of 1.99 million posts contributed by 40,056 users and viewed 20.12 million times indexed from 2 parenting sites over a period of 105 months. Using probabilistic methods, we determined the topics of discussion on these parenting sites. We developed a generative statistical-mechanical narrative model to automatically extract the underlying stories and story fragments from millions of posts. We aggregated the stories into an overarching narrative framework graph. In our model, stories were represented as network graphs with actants as nodes and their various relationships as edges. We estimated the latent stories circulating on these sites by modeling the posts as a sampling of the hidden narrative framework graph. Temporal trends were examined based on monthly user-poststatistics.ResultsWe discovered that discussions of exemption from vaccination requirements are highly represented. We found a strong narrative framework related to exemption seeking and a culture of distrust of government and medical institutions. Various posts reinforced part of the narrative framework graph in which parents, medical professionals, and religious institutions emerged as key nodes, and exemption seeking emerged as an important edge. In the aggregate story, parents used religion or belief to acquire exemptions to protect their children from vaccines that are required by schools or government institutions, but (allegedly) cause adverse reactions such as autism, pain, compromised immunity, and even dea...
Although a great deal of attention has been paid to how conspiracy theories circulate on social media, and the deleterious effect that they, and their factual counterpart conspiracies, have on political institutions, there has been little computational work done on describing their narrative structures. Predicating our work on narrative theory, we present an automated pipeline for the discovery and description of the generative narrative frameworks of conspiracy theories that circulate on social media, and actual conspiracies reported in the news media. We base this work on two separate comprehensive repositories of blog posts and news articles describing the well-known conspiracy theory Pizzagate from 2016, and the New Jersey political conspiracy Bridgegate from 2013. Inspired by the qualitative narrative theory of Greimas, we formulate a graphical generative machine learning model where nodes represent actors/actants, and multi-edges and self-loops among nodes capture context-specific relationships. Posts and news items are viewed as samples of subgraphs of the hidden narrative framework network. The problem of reconstructing the underlying narrative structure is then posed as a latent model estimation problem. To derive the narrative frameworks in our target corpora, we automatically extract and aggregate the actants (people, places, objects) and their relationships from the posts and articles. We capture context specific actants and interactant relationships by developing a system of supernodes and subnodes. We use these to construct an actant-relationship network, which constitutes the underlying generative narrative framework for each of the corpora. We show how the Pizzagate framework relies on the conspiracy theorists' interpretation of "hidden knowledge" to link otherwise unlinked domains of human interaction, and hypothesize that this multidomain focus is an important feature of conspiracy theories. We contrast this to the single domain focus of an actual conspiracy. While Pizzagate relies on the alignment of multiple domains, Bridgegate remains firmly rooted in the single domain of New Jersey politics. We hypothesize that the narrative framework of a conspiracy theory might stabilize quickly in contrast to the narrative framework of an actual conspiracy, which might develop more
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.