The lack of reliable single-use sensors prevents the biopharmaceutical industry from fully embracing single-use biomanufacturing processes. Sensors based on the same detection platform for all critical parameters in single-use bioprocess components would be highly desirable to significantly simplify their installation, calibration and operation. We review here our approach for passive radio-frequency identification (RFID)-based sensing that does not rely on costly proprietary RFID memory chips with an analog input but rather implements ubiquitous passive 13.56 MHz RFID tags as inductively coupled sensors with at least 16 bit resolution provided by a sensor reader. The developed RFID sensors combine several measured parameters from the resonant sensor antenna with multivariate data analysis and deliver unique capability of multiparameter sensing and rejection of environmental interferences with a single sensor. This general sensing approach provides an elegant solution for both analytical measurement and identification and documentation of the measured location.
Single-use biopharmaceutical manufacturing requires monitoring of critical manufacturing parameters. We have developed an approach for passive radio-frequency identification (RFID)-based sensing that converts ubiquitous passive 13.56 MHz RFID tags into inductively coupled sensors. We combine several measured parameters from the resonant sensor antenna with multivariate data analysis and deliver unique capability of multiparameter sensing and rejection of environmental interferences with a single sensor. We demonstrate here the integration of these RFID sensors into single-use biopharmaceutical manufacturing components. We have tested these sensors for over 500 h for measurements of temperature and solution conductivity with the accuracy of 0.1°C (32-48°C range) and accuracy of 0.3-2.9 mS/cm (0.5-230 mS/cm range). We further demonstrate simultaneous temperature and conductivity measurements with an individual RFID sensor with the accuracy of 0.2°C (5-60°C range) and accuracy of 0.9 mS/cm (0.5-183 mS/cm range). Developed RFID sensors provide several important features previously unavailable from other single-use sensing technologies such as the same sensor platform for measurements of physical, chemical, and biological parameters; multi-parameter monitoring with individual sensors; and simultaneous digital identification.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.