Roquin proteins preclude spontaneous T cell activation and aberrant differentiation of T follicular helper (Tfh) or T helper 17 (Th17) cells. Here we showed that deletion of Roquin-encoding alleles specifically in regulatory T (Treg) cells also caused the activation of conventional T cells. Roquin-deficient Treg cells downregulated CD25, acquired a follicular Treg (Tfr) cell phenotype, and suppressed germinal center reactions but could not protect from colitis. Roquin inhibited the PI3K-mTOR signaling pathway by upregulation of Pten through interfering with miR-17∼92 binding to an overlapping cis-element in the Pten 3' UTR, and downregulated the Foxo1-specific E3 ubiquitin ligase Itch. Loss of Roquin enhanced Akt-mTOR signaling and protein synthesis, whereas inhibition of PI3K or mTOR in Roquin-deficient T cells corrected enhanced Tfh and Th17 or reduced iTreg cell differentiation. Thereby, Roquin-mediated control of PI3K-mTOR signaling prevents autoimmunity by restraining activation and differentiation of conventional T cells and specialization of Treg cells.
The RNA-binding proteins Roquin-1/2 and Regnase-1 exert essential regulation by controlling proinflammatory mRNA expression to prevent autoimmune disease. More recently, inhibition of this post-transcriptional gene regulatory program has been demonstrated to enable enhanced anti-tumor responses by tumor antigen-specific CD8 + T cells. In this review we describe the functions of these RNA-binding proteins and the phenotypes that arise in association with genetic inhibition or inactivation. We discuss how inducible inactivation of the system reprograms CD4 + and CD8 + T cell fates by changing cell metabolism, activation, differentiation or effector/memory decisions. We furthermore outline what we need to know to precisely modulate this system in order to dampen autoimmune reactions or boost the efficacy of adoptively transferred T cells or chimeric antigen receptor (CAR) T cells in cancer immunotherapies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.