The development of new solvents is imperative in lithium metal batteries due to the incompatibility of conventional carbonate and narrow electrochemical windows of ether-based electrolytes. Whereas the fluorinated ethers showed improved electrochemical stabilities, they can hardly solvate lithium ions. Thus, the challenge in electrolyte chemistry is to combine the high voltage stability of fluorinated ethers with high lithium ion solvation ability of ethers in a single molecule. Herein, we report a new solvent, 2,2-dimethoxy-4-(trifluoromethyl)-1,3-dioxolane (DTDL), combining a cyclic fluorinated ether with a linear ether segment to simultaneously achieve high voltage stability and tune lithium ion solvation ability and structure. High oxidation stability up to 5.5 V, large lithium ion transference number of 0.75 and stable Coulombic efficiency of 99.2% after 500 cycles proved the potential of DTDL in high-voltage lithium metal batteries. Furthermore, 20 μm thick lithium paired LiNi0.8Co0.1Mn0.1O2 full cell incorporating 2 M LiFSI-DTDL electrolyte retained 84% of the original capacity after 200 cycles at 0.5 C.
Dimensionality plays an important role in the charge transport properties of organic semiconductors. Although three‐dimensional semiconductors, such as Si, are common in inorganic materials, imparting electrical conductivity to covalent three‐dimensional organic polymers is challenging. Now, the synthesis of a three‐dimensional π‐conjugated porous organic polymer (3D p‐POP) using catalyst‐free Diels–Alder cycloaddition polymerization followed by acid‐promoted aromatization is presented. With a surface area of 801 m2 g−1, full conjugation throughout the carbon backbone, and an electrical conductivity of 6(2)×10−4 S cm−1 upon treatment with I2 vapor, the 3D p‐POP is the first member of a new class of permanently porous 3D organic semiconductors.
Porous organic polymers (POPs) incorporating macrocyclic units have been investigated in recent years in an effort to transfer macrocycles’ intrinsic host-guest properties onto the porous networks to achieve complex separations. In this regard, highly interesting building blocks are presented by the family of cyclotetrabenzoin macrocycles with rigid, well-defined, electron-deficient cavities. This macrocycle shows high affinity towards linear guest molecules such as carbon dioxide, thus offering an ideal building block for the synthesis of CO2-philic POPs. Herein, we report the synthesis of a porous organic polymer through the condensation reaction between cyclotetrabenzil with 1,2,4,5-tetraaminobenzene under ionothermal conditions using the eutectic zinc chloride/sodium chloride/potassium chloride salt mixture at 250 oC. Notably, following the condensation reaction, the macrocycle favors 3D growth rather than 2D one while retaining the cavity. The resulting polymer, named 3D-mPOP, showed a highly microporous structure with the BET surface area of 1142 m2 g−1 and a high carbon dioxide affinity with a binding enthalpy of 39 kJ mol−1. Moreover, 3D-mPOP showed very high selectivity for carbon dioxide in carbon dioxide/methane and carbon dioxide /nitrogen mixtures.
The use of reactive molten salts, i.e., ZnCl2, as a soft template and a catalyst has been actively investigated in the preparation of covalent triazine frameworks (CTFs). Although the soft templating effect of the salt melt is more prominent at low temperatures, close to the melting point of ZnCl2, leading to the formation of abundant micropores, a significant mesopore formation is observed that is due to the partial carbonization and other side reactions at higher temperatures (>400 °C). Evidently, high-temperature synthesis of CTFs in various eutectic salt mixtures of ZnCl2 with alkali metal chloride salts also leads to mesopore formation. We reasoned that using the isocyanate moieties instead of cyano groups in the monomer, 1,4-phenylene isocyanate, could enable efficient interactions between carbonyl moieties and alkali metal ions to realize efficient salt templating to form covalent isocyanurate frameworks (CICFs). In this direction, the trimerization of 1,4-phenylene diisocyanate was carried out under ionothermal conditions at different reaction temperatures using ZnCl2 (CICF) and the eutectic salt mixture of KCl/NaCl/ZnCl2 (CICF-KCl/NaCl) as the reactive solvents. We observed notable differences in the morphologies of the two polymers, whereas CICF showed irregular-shaped micrometer-sized particles, the CICF-KCl/NaCl exhibited a filmlike morphology. Moreover, favorable ion-dipole interactions between alkali metal cations and oxygen atoms of the monomer facilitated two-dimensional growth and the formation of a purely microporous framework in the case of CICF-KCl/NaCl along with a near theoretical retention of the nitrogen content at 500 °C. The CICF-KCl/NaCl showed a BET surface area of 590 m2 g–1 along with a CO2 uptake capacity of 5.9 mmol g–1 at 273 K and 1.1 bar because of its high microporosity and nitrogen content. On the contrary, in the absence of alkali metal ions, CICF showed high mesopore content and a moderate CO2 uptake capacity. This study underscores the importance of the strength of the interactions between the salts and the monomer in the ionothermal synthesis to control the morphology, porosity, and gas uptake properties of the porous organic polymers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.