Porous organic polymers (POPs) incorporating macrocyclic units have been investigated in recent years in an effort to transfer macrocycles’ intrinsic host-guest properties onto the porous networks to achieve complex separations. In this regard, highly interesting building blocks are presented by the family of cyclotetrabenzoin macrocycles with rigid, well-defined, electron-deficient cavities. This macrocycle shows high affinity towards linear guest molecules such as carbon dioxide, thus offering an ideal building block for the synthesis of CO2-philic POPs. Herein, we report the synthesis of a porous organic polymer through the condensation reaction between cyclotetrabenzil with 1,2,4,5-tetraaminobenzene under ionothermal conditions using the eutectic zinc chloride/sodium chloride/potassium chloride salt mixture at 250 oC. Notably, following the condensation reaction, the macrocycle favors 3D growth rather than 2D one while retaining the cavity. The resulting polymer, named 3D-mPOP, showed a highly microporous structure with the BET surface area of 1142 m2 g−1 and a high carbon dioxide affinity with a binding enthalpy of 39 kJ mol−1. Moreover, 3D-mPOP showed very high selectivity for carbon dioxide in carbon dioxide/methane and carbon dioxide /nitrogen mixtures.
A simultaneous combination of porosity and tunable optoelectronic properties, common in covalent organic
frameworks, are rare in shape-persistent organic cages. Yet, organic cages offer important molecular advantages, the solubility and modularity. Herein, we report the synthesis of a series of chiral imine organic cages with three built-in rylene
units by means of dynamic imine chemistry and we investigate their textural and optoelectronic properties. Thereby we
demonstrate that the synthesized rylene cages are porous, can be reversibly reduced at accessible potentials, and can absorb
from UV up to green light. We also show that they preferentially adsorb CO2 over N2 and CH4 with a good selectivity. In
addition, we discovered that the cage incorporating three perylene-3,4:9,10-bis(dicarboximide) units displays a delayed fluorescence, likely as a consequence of formation of a correlated triplet pair, the multiexciton state in singlet fission. Rylene
cages thus represent a unique platform to investigate the effect of electronic properties on material porosity and, at the
same time, to probe excited-state phenomena in the limit of vanishing interchromophore coupling.
<br>
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.