Rationale: Aggravated atherosclerosis in B lymphocyte-deficient chimeric mice and reduced atherosclerosis after transfer of unfractionated spleen B lymphocytes into splenectomized mice have led to the widely held notion that B lymphocytes are atheroprotective. However, B lymphocytes can be pathogenic, because their depletion by anti-CD20 antibody ameliorated atherosclerosis, and transfer of B2 lymphocytes aggravated atherosclerosis. These observations raise the question of the identity of the atheroprotective B-lymphocyte population.Objective: The purpose of the study was to identify an atheroprotective B-lymphocyte subset and mechanisms by which they confer atheroprotection. Methods and Results:
The diverse leukocyte infiltrate in atherosclerotic mouse aortas was recently analyzed in 9 single cell RNA-Seq (scRNA-Seq) and 2 mass cytometry (CyTOF) studies. In a comprehensive meta-analysis, we demonstrate four macrophage subsets: resident, inflammatory, IFNIC and Trem2 foamy macrophages. We also find that monocytes, neutrophils, dendritic cells, natural killer cells, innate lymphoid cells-2 (ILC2) and CD8 T cells form prominent and separate populations. The CD4 T cells show a large population of Th17-like cells, which also contain γδ T cells. A small number of Tregs and Th1 cells is also identified. The present meta-analysis overcomes limitations of individual studies that, because of their experimental approach, overor under-represent certain cell populations. CyTOF identifies an even larger number of clusters, suggesting that surface markers provide more discriminatory information than transcriptomes. The present analysis provides evidence to further resolve some long-standing controversies in the field. First, Trem2 + foamy macrophages are not pro-inflammatory, but interferon-inducible cell (IFNIC) and inflammatory macrophages are. Second, about half of all foam cells are smooth muscle cell-derived, retaining smooth muscle cell transcripts rather than transdifferentiating to macrophages. Third, Pf4, which had been considered specific for platelets and megakaryocytes, is also prominently expressed in resident vascular macrophages. Finally, the discovery of a prominent ILC2 cluster links the scRNA-Seq work to recent flow cytometry data suggesting a strong atheroprotective role of ILC2 cells. This resolves apparent discrepancies regarding the role of Th2 cells in atherosclerosis based on studies that pre-dated the discovery of ILC2 cells.
Atherosclerosis is a chronic inflammatory arterial disease characterized by focal accumulation of lipid and inflammatory cells. It is the number one cause of deaths in the Western world because of its complications of heart attacks and strokes. Statins are effective in only approximately one third of patients, underscoring the urgent need for additional therapies. B cells that accumulate in atherosclerotic lesions and the aortic adventitia of humans and mice are considered to protect against atherosclerosis development. Unexpectedly, we found that selective B cell depletion in apolipoprotein E-deficient (ApoE−/−) mice using a well-characterized mAb to mouse CD20 reduced atherosclerosis development and progression without affecting the hyperlipidemia imposed by a high-fat diet. Adoptive transfer of 5 × 106 or 5 × 107 conventional B2 B cells but not 5 × 106 B1 B cells to a lymphocyte-deficient ApoE−/− Rag-2−/− common cytokine receptor γ-chain–deficient mouse that was fed a high-fat diet augmented atherosclerosis by 72%. Transfer of 5 × 106 B2 B cells to an ApoE−/− mouse deficient only in B cells aggravated atherosclerosis by >300%. Our findings provide compelling evidence for the hitherto unrecognized proatherogenic role of conventional B2 cells. The data indicate that B2 cells can potently promote atherosclerosis development entirely on their own in the total absence of all other lymphocyte populations. Additionally, these B2 cells can also significantly augment atherosclerosis development in the presence of T cells and all other lymphocyte populations. Our findings raise the prospect of B cell depletion as a therapeutic approach to inhibit atherosclerosis development and progression in humans.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.