Ring chromosomes are circular structures formed as a result of breaks in the chromosome arms and the fusion of the proximal broken ends with a loss of distal material, or by fusion of dysfunctional telomeres without any loss. The mechanism underlying this process has not yet been sufficiently explained. Commonly, rings occur as acquired genetic abnormalities; however, sometimes they are found as constitutional aberrations with a prevalence of around 1:50,000 live births. Here, we present a new case of r(9) in a female fetus with intrauterine growth retardation and slight craniofacial dysmorphisms. Both parents had a normal phenotype. Amniotic fluid karyotype showed r(9)(p24q34). An array CGH revealed 3 deletion segments: a ring chromosome with a 2.57-Mb deletion at 9pterp24.2 (chr9:163,131-2,729,722), a 2.60-Mb deletion at 9q34.3qter (chr9:138,523,302-141,122,055), and also a 0.15-Mb interstitial deletion at 9p24.1 (chr9:5,090,443-5,235,765). These deletions overlap with proposed regions for the 9p24.3 deletion and Kleefstra syndrome. Segregation analysis revealed a maternal origin of the rearranged chromosome. We conclude that both the ring chromosome and the interstitial deletion occurred de novo. This last deletion has not been reported before. Prenatal array CGH, combined with fine mapping of breakpoints contributes to the assessment of genotype-phenotype correlations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.