Constitutional ring chromosome 9, r(9), is a rare chromosomal disorder. Cytogenomic analyses by karyotyping, array comparative genomic hybridization (aCGH) and whole genome sequencing (WGS) were performed in a patient of r(9). Karyotyping detected a mosaic pattern of r(9) and monosomy 9 in 83% and 17% of cells, respectively. aCGH detected subtelomeric deletions of 407 kb at 9p24.3 and 884 kb at 9q34.3 and an interstitial duplication of 5.879 Mb at 9q33.2q34.11. WGS revealed double strand breaks (DSBs) at ends of 9p24.3 and 9q34.3, inverted repeats at ends of subtelomeric and 9q33.2q34.11 regions, and microhomology sequences at the junctions of this r(9). This is the first report of r(9) analyzed by WGS to delineate the mechanism of ring chromosome formation from repairing of subtelomeric DSBs. The loss of telomeres by subtelomeric DSBs triggered inverted repeats induced intra-strand foldback and then microhomology mediated synthesis and ligation, which resulted in the formation of this r(9) with distal deletions and an interstitial duplication. Review of literature found seven patients of r(9) with clinical and cytogenomic findings. These patients and the present patient were registered into the Human Ring Chromosome Registry and a map correlating critical regions and candidate genes with relevant phenotypes was constructed. Variable phenotypes of r(9) patients could be explained by critical regions and genes of DOCK8, DMRT, SMARCA2, CD274, IL33, PTPRD, CER1, FREM1 for 9p deletions, and the EHMT1 gene for 9q34 deletion syndrome. This interactive registry of r(9) could provide information for cytogenomic diagnosis, genetics counseling and clinical management. K E Y W O R D S clinical and cytogenomic findings, double stand breaks repairing, mechanism of ring chromosome formation, ring chromosome 9, whole genome sequencing 1 | INTRODUCTION Constitutional ring chromosomes which can involve any one of the 22 autosomes and sex chromosomes occur in about 1/50,000 newborns (Kosztolányi, 1987). Ring chromosomes arise typically from the breakage and subsequent fusion of both chromosome arms. Based on the integrity of genetic material, there are two types of ring chromosomes. One type is a complete ring resulting from subtelomeric fusion without any significant loss of genetic material, and the other type of incomplete ring shows distal or interstitial deletions and