Determination of the vertebrate left-right body axis during embryogenesis results in asymmetric development and placement of most inner organs. Although the asymmetric Nodal cascade is conserved in all vertebrates, the mechanism of symmetry breakage has remained controversial. In mammalian and fish embryos, a cilia-driven leftward flow of extracellular fluid is required for initiation of the Nodal cascade. This flow is localized at the posterior notochord ("node") and Kupffer's vesicle, respectively. In frog and chick embryos, however, molecular asymmetries are required earlier, from cleavage stages through gastrulation. The validity of a cilia-based mechanism for all vertebrates therefore has been questioned. Here we show that a cilia-driven leftward flow precedes asymmetric nodal expression in the frog Xenopus. Motile monocilia emerged on the gastrocoel roof plate during neurulation and lengthened and polarized from an initially central position to the posterior pole of cells. Concomitantly, a robust leftward fluid flow developed from stage 15 onward, significantly before asymmetric nodal transcription started in the left-lateral-plate mesoderm at stage 19. Injection of 1.5% methylcellulose into the archenteron prevented leftward flow and resulted in laterality defects, demonstrating that the flow itself was required for asymmetric gene expression and organ placement.
Cellular organelles provide opportunities to relate biological mechanisms to disease. Here we use affinity proteomics, genetics and cell biology to interrogate cilia: poorly understood organelles, where defects cause genetic diseases. Two hundred and seventeen tagged human ciliary proteins create a final landscape of 1,319 proteins, 4,905 interactions and 52 complexes. Reverse tagging, repetition of purifications and statistical analyses, produce a high-resolution network that reveals organelle-specific interactions and complexes not apparent in larger studies, and links vesicle transport, the cytoskeleton, signalling and ubiquitination to ciliary signalling and proteostasis. We observe sub-complexes in exocyst and intraflagellar transport complexes, which we validate biochemically, and by probing structurally predicted, disruptive, genetic variants from ciliary disease patients. The landscape suggests other genetic diseases could be ciliary including 3M syndrome. We show that 3M genes are involved in ciliogenesis, and that patient fibroblasts lack cilia. Overall, this organelle-specific targeting strategy shows considerable promise for Systems Medicine.
Vertebrate laterality, which is manifested by asymmetrically placed organs [1], depends on asymmetric activation of the Nodal signaling cascade in the left lateral plate mesoderm [2]. In fish, amphibians, and mammals, a cilia-driven leftward flow of extracellular fluid acts upstream of the Nodal cascade [3-6]. The direct target of flow has remained elusive. In Xenopus, flow occurs at the gastrocoel roof plate (GRP) in the dorsal midline of the embryo [4, 7]. The GRP is bordered by a second, bilaterally symmetrical Nodal expression domain [8]. Here we identify the Nodal inhibitor Coco as a critical target of flow. Coco and Xenopus Nodal-related 1 (Xnr1) are coexpressed in the lateralmost ciliated GRP cells. Coco becomes downregulated on the left side of the GRP as a direct readout of flow. Ablation of flow prevented Coco repression, whereas Xnr1 expression was independent of flow. Loss of flow-induced laterality defects were rescued by knockdown of Coco on the left side. Parallel knockdown of Coco and Xnr1 in GRP cells restored laterality defects in flow-impaired embryos, demonstrating that Coco acted through GRP-expressed Xnr1. Coco thus acts as a critical target of flow, suggesting that symmetry is broken by flow-mediated left-asymmetric release of Nodal repression at the midline.
Polycystic diseases and left-right (LR) axis malformations are frequently linked to cilia defects. Renal cysts also arise in mice and frogs lacking Bicaudal C (BicC), a conserved RNA-binding protein containing K-homology (KH) domains and a sterile alpha motif (SAM). However, a role for BicC in cilia function has not been demonstrated. Here, we report that targeted inactivation of BicC randomizes left-right (LR) asymmetry by disrupting the planar alignment of motile cilia required for cilia-driven fluid flow. Furthermore, depending on its SAM domain, BicC can uncouple Dvl2 signaling from the canonical Wnt pathway, which has been implicated in antagonizing planar cell polarity (PCP). The SAM domain concentrates BicC in cytoplasmic structures harboring RNA-processing bodies (P-bodies) and Dvl2. These results suggest a model whereby BicC links the orientation of cilia with PCP, possibly by regulating RNA silencing in P-bodies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.