The molecular pathogenesis of renal cell carcinoma (RCC) is poorly
understood. Whole-genome and exome sequencing followed by innovative tumorgraft
analyses (to accurately determine mutant allele ratios) identified several
putative two-hit tumor suppressor genes including BAP1. BAP1, a
nuclear deubiquitinase, is inactivated in 15% of clear-cell RCCs. BAP1
cofractionates with and binds to HCF-1 in tumorgrafts. Mutations disrupting the
HCF-1 binding motif impair BAP1-mediated suppression of cell proliferation, but
not H2AK119ub1 deubiquitination. BAP1 loss sensitizes RCC cells in
vitro to genotoxic stress. Interestingly, BAP1 and
PBRM1 mutations anticorrelate in tumors
(P=3×10−5), and combined loss of
BAP1 and PBRM1 in a few RCCs was associated with rhabdoid features
(q=0.0007). BAP1 and PBRM1 regulate seemingly different
gene expression programs, and BAP1 loss was associated with high tumor grade
(q=0.0005). Our results establish the foundation for an
integrated pathological and molecular genetic classification of RCC, paving the
way for subtype-specific treatments exploiting genetic vulnerabilities.
The leukemogenic tyrosine kinase fusion protein Bcr-Abl activates a Ras-dependent pathway required for transformation. To examine subsequent signal transduction events we measured the effect of Bcr-Abl on two mitogenactivated protein kinase (MAPK)
Studies of morphology, interspecific hybridization, protein/DNA sequences, and levels of gene expression have suggested that sex-related characters (particularly those involved in male reproduction) evolve rapidly relative to non-sex-related characters. Here we report a general comparison of evolutionary rates of sex-biased genes using data from cDNA microarray experiments and comparative genomic studies of Drosophila. Comparisons of nonsynonymous/synonymous substitution rates (d(N)/d(S)) between species of the D. melanogaster subgroup revealed that genes with male-biased expression had significantly faster rates of evolution than genes with female-biased or unbiased expression. The difference was caused primarily by a higher d(N) in the male-biased genes. The same pattern was observed for comparisons among more distantly related species. In comparisons between D. melanogaster and D. pseudoobscura, genes with highly biased male expression were significantly more divergent than genes with highly biased female expression. In many cases, orthologs of D. melanogaster male-biased genes could not be identified in D. pseudoobscura through a Blast search. In contrast to the male-biased genes, there was no clear evidence for accelerated rates of evolution in female-biased genes, and most comparisons indicated a reduced rate of evolution in female-biased genes relative to unbiased genes. Male-biased genes did not show an increased ratio of nonsynonymous/synonymous polymorphism within D. melanogaster, and comparisons of polymorphism/divergence ratios suggest that the rapid evolution of male-biased genes is caused by positive selection.
Here we report whole exome sequencing (WES) on a cohort of 71 patients with persistently unresolved white matter abnormalities with a suspected diagnosis of leukodystrophy or genetic leukoencephalopathy. WES analyses were performed on trio, or greater, family groups. Diagnostic pathogenic variants were identified in 35% (25/71) of patients. Potentially pathogenic variants were identified in clinically relevant genes in a further 7% (5/71) of cases, giving a total yield of clinical diagnoses in 42% of individuals. These findings provide evidence that WES can substantially decrease the number of unresolved white matter cases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.