A method has been developed that allows the nickel species in healthy and neoplastic tissues from cancer subjects to be compared. It is based on the coupling of sequentially applied anion-exchange and size-exclusion chromatography using an ICP-sector field mass spectrometer as detector. The method allows the resolution of seven nickel species in tissue extracts, which can be considered as fingerprints of nickel speciation. A qualitative difference in Ni-binding biomolecules between cytosols of normal and malignant colon tissues could not be found.
Studies to specify metal-binding species, such as metalloproteins that are present in trace amounts in colonic cell cytosol, using chromatographic separation methods in combination with inductively coupled plasma mass spectrometry (ICP-MS) as element-specific detection require an optimised sample preparation regarding the solubilisation of the proteins. Focus should be taken to avoid metal contamination, enzymatic digestion by different proteases and oxidation. In this article different sample preparation methods are studied to find a suitable method for the isolation and characterisation of Ni species previously found in cytosols from normal and malignant tissues of the human colon. The total Ni concentrations of the cytosols were determined as well as the total protein content. Thus, a Ni-containing protein could be isolated from cytosols of malignant human colonic tissues using size-exclusion chromatography with ICP-MS for element-specific detection. Ni-containing species in the molecular mass range from 10,000 to 20,000 Da were found and pre-concentrated. The determination of the molecular mass of the species was performed through online coupling of reversed-phase chromatography with electrospray ionisation quadrupole time-of-flight MS. Using identical chromatographic conditions and ICP-MS the detected protein was shown to contain Ni.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.