We study the evolution of cooperation in the spatial public goods game in the presence of third-party rewarding and punishment. The third party executes public intervention, punishing groups where cooperation is weak and rewarding groups where cooperation is strong. We consider four different scenarios to determine what works best for cooperation, in particular, neither rewarding nor punishment, only rewarding, only punishment or both rewarding and punishment. We observe strong synergistic effects when rewarding and punishment are simultaneously applied, which are absent if neither of the two incentives or just each individual incentive is applied by the third party. We find that public cooperation can be sustained at comparatively low third-party costs under adverse conditions, which is impossible if just positive or negative incentives are applied. We also examine the impact of defection tolerance and application frequency, showing that the higher the tolerance and the frequency of rewarding and punishment, the more cooperation thrives. Phase diagrams and characteristic spatial distributions of strategies are presented to corroborate these results, which will hopefully prove useful for more efficient public policies in support of cooperation in social dilemmas.
The identification of the most influential nodes has been a vibrant subject of research across the whole of network science. Here we map this problem to structured evolutionary populations, where strategies and the interaction network are both subject to change over time based on social inheritance. We study cooperative communities, which cheaters can invade because they avoid the cost of contributions that are associated with cooperation. The question that we seek to answer is at which nodes cheaters invade most successfully. We propose the weighted degree decomposition to identify and rank the most influential invaders. More specifically, we distinguish two kinds of ranking based on the weighted degree decomposition. We show that a ranking strategy based on negative-weighted degree allows to successfully identify the most influential invaders in the case of weak selection, while a ranking strategy based on positive-weighted degree performs better when the selection is strong. Our research thus reveals how to identify the most influential invaders based on statistical measures in dynamically evolving cooperative communities.
In this paper, we explore the impact of four different types of dissimilarity-driven behavior on the evolution of cooperation in the spatial public goods game. While it is commonly assumed that individuals adapt their strategy by imitating one of their more successful neighbors, in reality only very few will be awarded the highest payoffs. Many have equity or equality preferences, and they have to make do with an average or even with a low payoff. To account for this, we divide the population into two categories. One consists of payoff-driven players, while the other consists of dissimilarity-driven players. The later imitate the minority strategy in their group based on four different dissimilarity-driven behaviors. The rule that most effectively promotes cooperation, and this regardless of the multiplication factor of the public goods game, is when individuals adopt the minority strategy only when their payoff is better than that of their neighbors. If the dissimilarity-driven players adopt the minority strategy regardless of the payoffs of others, or if their payoff is the same, the population typically evolves towards a neutral state where cooperators and defectors are equally common. This may be beneficial when the multiplication factor is low, when defectors would otherwise dominate. However, if the dissimilarity-driven players adopt the minority strategy only when their payoff is worse than that of their neighbors, then cooperation is not promoted at all in comparison to the baseline case in the absence of dissimilarity-driven behavior. We explore the pattern formation behind these results, and we discuss their wider implications for the better understanding of cooperative behavior in social groups.
We analyze the sound recording of the Southeast Asian cicada Tosena depicta with methods of nonlinear time series analysis. First, we reconstruct the phase space from the sound recording and test it against determinism and stationarity. After positively establishing determinism and stationarity in the series, we calculate the maximal Lyapunov exponent. We find that the latter is positive, from which we conclude that the sound recording possesses clear markers of deterministic chaos. We discuss that methods of nonlinear time series analysis can yield instructive insights and foster the understanding of acoustic and vibrational communication among insects, as well as provide vital clues regarding the origin and functionality of their sound production mechanisms. Furthermore, such studies can serve as means to distinguish different insect genera or even species either from each other or under various environmental influences.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.