The pathogenicity of Staphylococcus aureus strains varies tremendously (as seen with animals). It is largely dependent on global regulators, which control the production of toxins, virulence, and fitness factors. Despite the vast knowledge of staphylococcal molecular genetics, there is still widespread dispute over what factors must come together to make a strain highly virulent. S. aureus NCTC8325 (RN1 and derivatives) is a widely used model strain for which an incomparable wealth of knowledge has accumulated in the almost 50 years since its isolation. Although RN1 has functional agr, sarA, and sae global regulators, it is defective in two regulatory genes, rsbU (a positive activator of SigB) and tcaR (an activator of protein A transcription), and is therefore considered by many to be a poor model for studies of regulation and virulence. Here, we repaired these genes and compared the resulting RN1 derivatives with other widely used strains, Newman, USA300, UAMS-1, and COL, plus the parental RN1, with respect to growth, extracellular protein pattern, hemolytic activity, protein A production, pigmentation, biofilm formation, and mouse lethality. The tcaR-repaired strain, showed little alteration in these properties. However, the rsbU-repaired strain was profoundly altered. Hemolytic activity was largely decreased, the exoprotein pattern became much more similar to that of typical wild-type (wt) S. aureus, and there was a surprising increase in mouse lethality. We note that each of the strains tested has a mutational alteration in one or more other regulatory functions, and we conclude that the repaired RN1 is a good model strain for studies of staphylococcal regulation and pathobiology; although strain Newman has been used extensively for such studies in recent years, it has a missense mutation in saeS, the histidine kinase component of the sae signaling module, which profoundly alters its regulatory phenotype. If this mutation were repaired, Newman would be considerably improved as a model strain.As a classical, dangerous, and universal human pathogen, Staphylococcus aureus has aroused continuing interest in its epidemiology, pathogenesis, and antibiotic resistance and other features of its pathobiology. This interest has led, concomitantly with the development of bacterial molecular biology, to the development of a model strain for the analysis of staphylococcal molecular genetics in relation to the pathogenicity of the organism. This strain, NCTC8325, was isolated in 1960 from a sepsis patient and utilized as the propagating strain for phage 47 of the international phage typing system. It was originally chosen for research owing to its sensitivity to all known antibiotics and was initially used primarily for studies of antibiotic resistance transfer and carriage by plasmids (32). It is designated RN1 in the Novick lab strain collection and is presently maintained by the Central Public Health Laboratory, Colindale, London, United Kingdom, by the ATCC and by the recently established Network on Antimicrobial Resi...
Invasive and biomaterial-associated infections in humans are often difficult to diagnose and treat. Here, guided by recent advances in clinically relevant optical imaging technologies, we explore the use of fluorescently labelled vancomycin (vanco-800CW) to specifically target and detect infections caused by Gram-positive bacteria. The application potential of vanco-800CW for real-time in vivo imaging of bacterial infections is assessed in a mouse myositis model and a human post-mortem implant model. We show that vanco-800CW can specifically detect Gram-positive bacterial infections in our mouse myositis model, discriminate bacterial infections from sterile inflammation in vivo and detect biomaterial-associated infections in the lower leg of a human cadaver. We conclude that vanco-800CW has a high potential for enhanced non-invasive diagnosis of infections with Gram-positive bacteria and is a promising candidate for early-phase clinical trials.
In most bacteria, nutrient limitations provoke the stringent control through the rapid synthesis of the alarmones pppGpp and ppGpp. Little is known about the stringent control in the human pathogen Staphylococcus aureus, partly due to the essentiality of the major (p)ppGpp synthase/hydrolase enzyme RSH (RelA/SpoT homolog). Here, we show that mutants defective only in the synthase domain of RSH (rsh syn ) are not impaired in growth under nutrient-rich conditions. However, these mutants were more sensitive toward mupirocin and were impaired in survival when essential amino acids were depleted from the medium. RSH is the major enzyme responsible for (p)ppGpp synthesis in response to amino acid deprivation (lack of Leu/Val) or mupirocin treatment. Transcriptional analysis showed that the RSH-dependent stringent control in S. aureus is characterized by repression of genes whose products are predicted to be involved in the translation machinery and by upregulation of genes coding for enzymes involved in amino acid metabolism and transport which are controlled by the repressor CodY. Amino acid starvation also provoked stabilization of the RNAs coding for major virulence regulators, such as SaeRS and SarA, independently of RSH. In an animal model, the rsh syn mutant was shown to be less virulent than the wild type. Virulence could be restored by the introduction of a codY mutation into the rsh syn mutant. These results indicate that stringent conditions are present during infection and that RSH-dependent derepression of CodY-regulated genes is essential for virulence in S. aureus.
SummaryRNase Y of Bacillus subtilis is a key member of the degradosome and important for bulk mRNA turnover. In contrast to B. subtilis, the RNase Y homologue (rny/cvfA) of Staphylococcus aureus is not essential for growth. Here we found that RNase Y plays a major role in virulence gene regulation. Accordingly, rny deletion mutants demonstrated impaired virulence in a murine bacteraemia model. RNase Y is important for the processing and stabilization of the immature transcript of the global virulence regulator system SaePQRS. Moreover, RNase Y is involved in the activation of virulence gene expression at the promoter level. This control is independent of both the virulence regulator agr and the saePQRS processing and may be mediated by small RNAs some of which were shown to be degraded by RNase Y. Besides this regulatory effect, mRNA levels of several operons were significantly increased in the rny mutant and the halflife of one of these operons was shown to be extremely extended. However, the half-life of many mRNA species was not significantly altered. Thus, RNase Y in S. aureus influences mRNA expression in a tightly controlled regulatory manner and is essential for coordinated activation of virulence genes.
SummaryThe pathogenic yeast Candida albicans can develop resistance to the widely used antifungal agent fluconazole, which inhibits ergosterol biosynthesis. Resistance is often caused by gain-of-function mutations in the transcription factors Mrr1, Tac1 and Upc2, which result in constitutive overexpression of multidrug efflux pumps and ergosterol biosynthesis genes respectively. It is not known how the permanently changed gene expression program in resistant strains affects their fitness in the absence of drug selection pressure. We have systematically investigated the effects of activating mutations in Mrr1, Tac1 and Upc2, individually and in all possible combinations, on the degree of fluconazole resistance and on the fitness of C. albicans in an isogenic strain background. All combinations of different resistance mechanisms resulted in a stepwise increase in drug resistance, culminating in 500-fold increased fluconazole resistance in strains possessing mutations in the three transcription factors and an additional resistance mutation in the drug target enzyme Erg11. The acquisition of resistance mutations was associated with reduced fitness under non-selective conditions in vitro as well as in vivo during colonization of a mammalian host. Therefore, without compensatory mutations, the inability to appropriately regulate gene expression results in a loss of competitive fitness of drug-resistant C. albicans strains.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.