The signals directing primordial germ cell (PGC) migration in vertebrates are largely unknown. We demonstrate that sdf-1 mRNA is expressed in locations where PGCs are found and toward which they migrate in wild-type as well as in mutant embryos in which PGC migration is abnormal. Knocking down SDF-1 or its receptor CXCR4 results in severe defects in PGC migration. Specifically, PGCs that do not receive the SDF-1 signal exhibit lack of directional movement toward their target and arrive at ectopic positions within the embryo. Finally, we show that the PGCs can be attracted toward an ectopic source of the chemokine, strongly suggesting that this molecule provides a key directional cue for the PGCs.
Cadherin-mediated adhesion depends on the association of its cytoplasmic domain with the actin-containing cytoskeleton. This interaction is mediated by a group of cytoplasmic proteins: α-and β- or γ- catenin. Phosphorylation of β-catenin on tyrosine residues plays a role in controlling this association and, therefore, cadherin function. Previous work from our laboratory suggested that a nonreceptor protein tyrosine phosphatase, bound to the cytoplasmic domain of N-cadherin, is responsible for removing tyrosine-bound phosphate residues from β-catenin, thus maintaining the cadherin–actin connection (Balsamo et al., 1996). Here we report the molecular cloning of the cadherin-associated tyrosine phosphatase and identify it as PTP1B. To definitively establish a causal relationship between the function of cadherin-bound PTP1B and cadherin-mediated adhesion, we tested the effect of expressing a catalytically inactive form of PTP1B in L cells constitutively expressing N-cadherin. We find that expression of the catalytically inactive PTP1B results in reduced cadherin-mediated adhesion. Furthermore, cadherin is uncoupled from its association with actin, and β-catenin shows increased phosphorylation on tyrosine residues when compared with parental cells or cells transfected with the wild-type PTP1B. Both the transfected wild-type and the mutant PTP1B are found associated with N-cadherin, and recombinant mutant PTP1B binds to N-cadherin in vitro, indicating that the catalytically inactive form acts as a dominant negative, displacing endogenous PTP1B, and rendering cadherin nonfunctional. Our results demonstrate a role for PTP1B in regulating cadherin-mediated cell adhesion.
Abstract. Cadherins are a family of cell-cell adhesion molecules which play a central role in controlling morphogenetic movements during development. Cadherin function is regulated by its association with the actin containing cytoskeleton, an association mediated by a complex of cytoplasmic proteins, the catenins: e~, [3, and ~/. Phosphorylated tyrosine residues on 13-catenin are correlated with loss of cadherin function. Consistent with this, we find that only nontyrosine phosphorylated 13-catenin is associated with N-cadherin in El0 chick retina tissue. Moreover, we demonstrate that a PTP1B-like tyrosine phosphatase associates with N-cadherin and may function as a regulatory switch controlling cadherin function by dephosphorylating 13-catenin, thereby maintaining cells in an adhesion-competent state,The PTP1B-Iike phosphatase is itself tyrosine phosphorylated. Moreover, both direct binding experiments performed with phosphorylated and dephosphorylated molecules, and treatment of cells with tyrosine kinase inhibitors indicate that the interaction of the PTPIBlike phosphatase with N-cadherin depends on its tyrosine phosphorylation. Concomitant with the tyrosine kinase inhibitor-induced loss of the PTP1B-Iike phosphatase from its association with N-cadherin, phosphorylated tyrosine residues are retained on 13-catenin, the association of N-cadherin with the actin containing cytoskeleton is lost and N-cadherin-mediated cell adhesion is prevented. Tyrosine phosphatase inhibitors also result in the accumulation of phosphorylated tyrosine residues on ~-catenin, loss of the association of N-cadherin with the actin-containing cytoskeleton, and prevent N-cadherin mediated adhesion, presumably by directly blocking the function of the PTP1B-Iike phosphatase.We previously showed that the binding of two ligands to the cell surface N-acetylgalactosaminylphosphotransferase (GalNAcPTase), the monoclonal antibody 1Bll and a proteoglycan with a 250-kD core protein, results in the accumulation of phosphorylated tyrosine residues on 13-catenin, uncoupling of N-cadherin from its association with the actin containing cytoskeleton, and loss of N-cadherin function. We now report that binding of these ligands to the GalNAcPTase resuits in the absence of the PTP1B-Iike phosphatase from its association with N-cadherin as well as the loss of the tyrosine kinase and tyrosine phosphatase activities that otherwise co-precipitate with N-cadherin. Control antibodies and proteoglycans have no such effect. This effect is similar to that observed with tyrosine kinase inhibitors, suggesting that the GalNAcPTase/proteoglycan interaction inhibits a tyrosine kinase, thereby preventing the phosphorylation of the PTP1B-like phosphatase, and its association with N-cadherin.Taken together these data indicate that a PTP1B-like tyrosine phosphatase can regulate N-cadherin function through its ability to dephosphorylate 13-catenin and that the association of the phosphatase with N-cadherin is regulated via the interaction of the GalNAcPTase with its proteogl...
Formation of the gastrula organizer requires suppression of ventralizing signals and, in fish and frog, the need to counteract the effect of ubiquitously present maternal factors that activate the expression of Bmps. How the balance between dorsalizing and ventralizing factors is shifted towards organizer establishment at late blastula stages is not well understood. Mutations in zebrafish bozozok (boz) cause severe defects in axial mesoderm and anterior neurectoderm and affect organizer formation. The boz gene encodes the homeodomain protein Bozozok/ Dharma and its expression in the region of the organizer is activated through β-catenin signaling. Here, we investigate the molecular mechanism by which boz contributes to the establishment of the organizer. We demonstrate that the homeodomain protein Boz acts as a transcriptional repressor in zebrafish: overexpression of an En-Boz fusion protein can rescue the boz phenotype, whereas a VP16-Boz fusion protein acts as an antimorph. Expression analysis of bmp2b indicates that Boz negatively regulates bmp2b in the prospective organizer. We demonstrate that this Boz activity is independent of that of other zygotic genes, because it also occurs when translation of zygotic genes is suppressed by cycloheximide (CHX). We identify two highaffinity binding sites for Boz within the first intron of the bmp2b gene. Deletion of these control elements abolishes Boz-dependent repression of bmp2b in the early blastula. Thus, Boz directly represses bmp2b by binding to control elements in the bmp2b locus. We propose that early transcriptional repression of bmp2b by Boz is one of the first steps toward formation of a stable organizer, whereas the later-acting Bmp antagonists (e.g. Chordin, Noggin) modulate Bmp activity in the gastrula to induce patterning along the dorsoventral axis. Thus, similar to Drosophila Dpp, asymmetry of Bmp expression in zebrafish is initiated at the transcriptional level, and the shape of the gradient and its function as a morphogen are later modulated by post-transcriptional mechanisms.
6-Gingerol, a major pungent component of ginger (Zingiber officinale Roscoe, Zingiberaceae), has been reported to have anti-tumor activities. However, the metabolic fate of 6-gingerol and the contribution of its metabolites to the observed activities are still unclear. In the present study, we investigated the biotransformation of 6-gingerol in different cancer cells and in mice, purified and identified the major metabolites from human lung cancer cells, and determined the effects of the major metabolites on the proliferation of human cancer cells. Our results show that 6-gingerol is extensively metabolized in H-1299 human lung cancer cells, CL-13 mouse lung cancer cells, HCT-116 and HT-29 human colon cancer cells, and in mice. The two major metabolites in H-1299 cells were purified and identified as (3R,5S)-6-gingerdiol (M1) and (3S,5S)-6-gingerdiol (M2) based on the analysis of their 1D and 2D NMR data. Both metabolites induced cytotoxicity in cancer cells after 24 hours, with M1 having a comparable effect to 6-gingerol in H-1299 cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.