Investigations on diverse aspects of fluoro-organic compounds have rapidly increased during the past decades. Because natural sources of fluoro-organic compounds are extremely rare, the industrial synthesis of fluorinated organic compounds and production of fluorinated natural product derivatives have greatly expanded in recent years because of their increasing importance in the agrochemical and pharmaceutical industries. Due to structural complexity or instability, synthetic modification is often not possible, and various biofluorination strategies have been developed in recent years for applications in the anti-cancer, anti-viral and anti-infection fields. Despite the industrial importance of fluorinated compounds, there have been serious concerns worldwide over the levels and synthetic routes of certain fluorinated organic compounds, in particular perfluorinated chemicals (PFCs). PFCs are emerging and recalcitrant pollutants which are widely distributed in the environment and have been detected in humans and wildlife globally. PFCs have been demonstrated to be potentially carcinogenic, adversely affect the neuroendocrine and immune systems, and produce neurotoxicity, heptatotoxicity and endocrine disrupting effects in vertebrate animals. Here, we provide an overview of recent advances in our understanding of the biology of various fluoro-organic compounds and perspectives for new enzymes and metabolic pathways for bioremediation of these chemicals.
Driver aNd Lai. 3009 611. Condensations of the X?ylenoEs with Carbon Tetrahalides.By J. E. DRIVER and (MISS) T. F. LAI.Each of the xylenols has been condensed with carbon tetrachloride by the use of zinc chloride or aluminium chloride as catalyst. Depending on the nuclear positions open to electrophilic attack varying products were obtained, namely xylyl carbonates, xylyl hydroxydimethylbenzoates, dihydroxytetramethylbenzophenones, tetramethylxanthones, aurin-type dyes, and trihydroxytrixylylmethanes. In some reactions the use of carbon tetrabromide gave increased yields of certain products.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.