Hericium erinaceus (HE) is a common edible mushroom consumed in several Asian countries and considered to be a medicinal mushroom with neuroprotective effects. Erinacine A (EA) is a bioactive compound in Hericium erinaceus mycelium (HEM) that has been shown to have a neuroprotective effect against neurodegenerative diseases, e.g., Parkinson’s disease (PD). Although the etiology of PD is still unclear, neuroinflammation may play an important role in causing dopaminergic neuron loss, which is a pathological hallmark of PD. However, glial cell activation has a close relationship with neuroinflammation. Thus, this study aimed to investigate the anti-neuroinflammatory and neuroprotective effects of EA on lipopolysaccharide (LPS)-induced glial cell activation and neural damage in vitro and in vivo. For the in vitro experiments, glial cells, BV-2 microglial cells and CTX TNA2 astrocytes were pretreated with EA and then stimulated with LPS and/or IFN-γ. The expression of proinflammatory factors in the cells and culture medium was analyzed. In addition, differentiated neuro-2a (N2a) cells were pretreated with EA or HEM and then stimulated with LPS-treated BV-2 conditioned medium (CM). The cell viability and the amount of tyrosine hydroxylase (TH) and mitogen-activated protein kinases (MAPKs) were analyzed. In vivo, rats were given EA or HEM by oral gavage prior to injection of LPS into the substantia nigra (SN). Motor coordination of the rats and the expression of proinflammatory mediators in the midbrain were analyzed. EA pretreatment prevented LPS-induced iNOS expression and NO production in BV-2 cells and TNF-α expression in CTX TNA2 cells. In addition, both EA and HEM pretreatment significantly increased cell viability and TH expression and suppressed the phosphorylation of JNK and NF- κB in differentiated N2a cells treated with CM. In vivo, both EA and HEM significantly improved motor dysfunction in the rotarod test and the amphetamine-induced rotation test and reduced the expression of TNF-α, IL-1β and iNOS in the midbrain of rats intranigrally injected with LPS. The results demonstrate that EA ameliorates LPS-induced neuroinflammation and has neuroprotective properties.
Vitrification and ultrarapid laser warming are crucial for the cryopreservation of animal embryos, oocytes, and other cells of medicinal, genetic, and agricultural value. In the present study, we focused on alignment and bonding techniques for a special cryojig that combines a jig tool and jig holder into one piece. This novel cryojig was used to obtain a high laser accuracy of 95% and a successful rewarming rate of 62%. The experimental results indicated that our refined device improved laser accuracy in the warming process after long-term cryo-storage through vitrification. We anticipate that our findings will lead to cryobanking applications that use vitrification and laser nanowarming to preserve cells and tissues from a wide range of species.
Vitrification and ultra-rapid laser warming technique is an important approach for cryopreservation of animal embryos and oocytes, as well as other cells with medicinal, genetic, and agricultural value. We believe that the long term cryo-storage after vitrification and for the following laser warming has only been achieved to date using our customized device which was first attempted to be developed in our study. In the present study, we focused on developing alignment and bonding techniques for special cryo-jig which were assembling jig tool and jig holder in one piece. This newly produced customized cryo-jig was demonstrated to have significantly high laser striking accuracy of 95% and a successful rewarming rate of 62%. This study was experimentally demonstrate an refined novel device for improvement of laser striking accuracy after long term cryo-storage using vitrification and laser warming technique. In addition, the customized device described herein was successfully applied to a biological sample with over a thousand coral larvae in long term cryo-storage. We anticipate that our core findings will provide further examples of cryobanking applications that use vitrification and nano-laser warming to help a wide range of cells and tissues from diverse species.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.