Photoactivation in CdSe/ZnS quantum dots (QDs) on UV/Vis light exposure improves photoluminescence (PL) and photostability. However, it was not observed in fluorescent carbon quantum dots (CDs). Now, photoactivated fluorescence enhancement in fluorine and nitrogen co‐doped carbon dots (F,N‐doped CDs) is presented. At 1.0 atm, the fluorescence intensity of F,N‐doped CDs increases with UV light irradiation (5 s–30 min), accompanied with a blue‐shift of the fluorescence emission from 586 nm to 550 nm. F,N‐doped CDs exhibit photoactivated fluorescence enhancement when exposed to UV under high pressure (0.1 GPa). F,N‐doped CDs show reversible piezochromic behavior while applying increasing pressure (1.0 atm to 9.98 GPa), showing a pressure‐triggered aggregation‐induced emission in the range 1.0 atm–0.65 GPa. The photoactivated CDs with piezochromic fluorescence enhancement broadens the versatility of CDs from ambient to high‐pressure conditions and enhances their anti‐photobleaching.
We have reinvestigated the excited state dynamics of cyclohexa-1,3-diene (CHD) with time-resolved photoelectron spectroscopy and fewest switches surface hopping molecular dynamics based on linear response time-dependent density functional theory after excitation to the lowest lying ππ* (1B) state. The combination of both theory and experiment revealed several new results: First, the dynamics progress on one single excited state surface. After an incubation time of 35 ± 10 fs on the excited state, the dynamics proceed to the ground state in an additional 60 ± 10 fs, either via a conrotatory ring-opening to hexatriene or back to the CHD ground state. Moreover, ring-opening predominantly occurs when the wavepacket crosses the region of strong nonadiabatic coupling with a positive velocity in the bond alternation coordinate. After 100 fs, trajectories remaining in the excited state must return to the CHD ground state. This extra time delay induces a revival of the photoelectron signal and is an experimental confirmation of the previously formulated model of two parallel reaction channels with distinct time constants. Finally, our simulations suggest that after the initially formed cis-Z-cis HT rotamer the trans-Z-trans isomer is formed, before the thermodynamical equilibrium of three possible rotamers is reached after 1 ps.
Sulfonate ester hydrolysis has been the subject of recent debate, with experimental evidence interpreted in terms of both stepwise and concerted mechanisms. In particular, a recent study of the alkaline hydrolysis of a series of benzene arylsulfonates (Babtie et al., Org. Biomol. Chem.10, 2012, 8095) presented a nonlinear Brønsted plot, which was explained in terms of a change from a stepwise mechanism involving a pentavalent intermediate for poorer leaving groups to a fully concerted mechanism for good leaving groups and supported by a theoretical study. In the present work, we have performed a detailed computational study of the hydrolysis of these compounds and find no computational evidence for a thermodynamically stable intermediate for any of these compounds. Additionally, we have extended the experimental data to include pyridine-3-yl benzene sulfonate and its N-oxide and N-methylpyridinium derivatives. Inclusion of these compounds converts the Brønsted plot to a moderately scattered but linear correlation and gives a very good Hammett correlation. These data suggest a concerted pathway for this reaction that proceeds via an early transition state with little bond cleavage to the leaving group, highlighting the care that needs to be taken with the interpretation of experimental and especially theoretical data.
Carbon dots (CDs) have gained intensive interests owing to their unique structure and excellent optoelectronic performances. However, to acquire CDs with a broadband emission spectrum still remains an issue. In this work, nitrogen-doped CDs (N-CDs) with near-ultraviolet (NUV), visible, and near-infrared (NIR) emission were synthesized via one-pot solvothermal strategy, and the excitation-independent NUV and NIR emission and excitation-dependent visible emission were observed in the photoluminescence (PL) spectra of N-CDs. Moreover, the as-synthesized N-CDs displayed two-photon fluorescence emission. It is important to note that N-CDs also exhibited piezochromic luminescence with reversibility, in which the red- and blue-shifted PL with increasing applied pressure (0.07-5.18 GPa) and the red- and blue-shifted PL with releasing applied pressure (5.18 GPa to 1 atm) were developed for the first time. Combined with good hydrophilicity, high photobleaching resistance, and low toxicity, the piezochromic luminescence would greatly boost the valuable applications of N-CDs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.