Silicon photonic integrated circuits for telecommunication and data centers have been well studied in the past decade, and now most related efforts have been progressing toward commercialization. Scaling up the silicon-oninsulator (SOI)-based device dimensions in order to extend the operation wavelength to the short mid-infrared (MIR) range (2-4 μm) is attracting research interest, owing to the host of potential applications in lab-on-chip sensors, free space communications, and much more. Other material systems and technology platforms, including silicon-on-silicon nitride, germanium-on-silicon, germanium-on-SOI, germanium-on-silicon nitride, sapphireon-silicon, SiGe alloy-on-silicon, and aluminum nitride-on-insulator are explored as well in order to realize low-loss waveguide devices for different MIR wavelengths. In this paper, we will comprehensively review silicon photonics for MIR applications, with regard to the state-of-the-art achievements from various device demonstrations in different material platforms by various groups. We will then introduce in detail of our institute's research and development efforts on the MIR photonic platforms as one case study. Meanwhile, we will discuss the integration schemes along with remaining challenges in devices (e.g., light source) and integration. A few application-oriented examples will be examined to illustrate the issues needing a critical solution toward the final production path (e.g., gas sensors). Finally, we will provide our assessment of the outlook of potential future research topics and engineering challenges along with opportunities.
We determine the top quark mass m t using t t pairs produced in the DO " detector by ͱsϭ1.8 TeV pp collisions in a 125 pb Ϫ1 exposure at the Fermilab Tevatron. We make a two constraint fit to m t in t t→bW ϩ b W Ϫ final states with one W boson decaying to qq and the other to e or . Likelihood fits to the data yield m t (lϩjets)ϭ173.3Ϯ5.6 (stat) Ϯ 5.5 (syst) GeV/c 2 . When this result is combined with an analysis of events in which both W bosons decay into leptons, we obtain m t ϭ172.1Ϯ5.2 (stat) Ϯ 4.9 (syst) GeV/c 2 . An alternate analysis, using three constraint fits to fixed top quark masses, gives m t (lϩjets)ϭ176.0 Ϯ7.9 (stat)Ϯ 4.8 (syst) GeV/c 2 , consistent with the above result. Studies of kinematic distributions of the top quark candidates are also presented. ͓S0556-2821͑98͒06815-5͔
The mechanical and electronic properties of both the monolayer and bilayer phosphorenes under either isotropic or uniaxial strain have been systematically investigated using first-principles calculations. It is interesting to find that: 1) Under a large enough isotropic tensile strain, the monolayer phosphorene would lose its pucker structure and transform into a flat hexagonal plane, while two inner sublayers of the bilayer phosphorene could be bonded due to its interlayer distance contraction. 2) Under the uniaxial tensile strain along a zigzag direction, the pucker distance of each layer in the bilayer phosphorene can exhibit a specific negative Poisson's ratio. 3) The electronic properties of both the monolayer and bilayer phosphorenes are sensitive to the magnitude and direction of the applied strains. Their band gaps decrease more rapidly under isotropic compressive strain than under uniaxial strain. Also, their direct-indirect band gap transitions happen at the larger isotropic tensile strains compared with that under uniaxial strain. 4) Under the isotropic compressive strain, the bilayer phosphorene exhibits a transition from a direct-gap semiconductor to a metal. In contrast, the monolayer phosphorene initially has the direct-indirect transition and then transitions to a metal. However, under isotropic tensile strain, both the bilayer and monolayer phosphorene show the direct-indirect transition and, finally, the transition to a metal. Our numerical results may open new potential applications of phosphorene in nanoelectronics and nanomechanical devices by external isotropic strain or uniaxial strain along different directions.
We report the first synthesis of the epoxy resin/polyurethane (EP/PU) hybrid networks via frontal polymerization (FP). In a typical run, the appropriate amounts of reactants (poly(propylene oxide glycol), epoxy resin diglycidyl ether of bisphenol A, 2,4-toluene diisocyanate, and 1,4-butanediol with stannous caprylate (as the catalyst)) were mixed together at initial temperature in the presence of toluene (as the solvent). FP was thermally ignited at one end of the tubular reactor, and the resultant hot fronts propagated throughout the reaction vessel. Once initiated, no further energy was required for polymerization to occur. The dependence of the front velocity and front temperature on the catalyst concentration was thoroughly investigated. The samples were characterized with a Fourier transform infrared spectrometer, thermogravimetric analysis, and a scanning electron microscope. EP/PU hybrid networks synthesized by FP have the same properties as those synthesized by batch polymerization, but the FP method requires significantly less time and lower energy input.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.