An inverse design and optimization method is developed to determine the proper size and location of the circular holes (coolant flow passages) in a composite turbine blade. The temperature distributions specified on the outer blade surface and on the surfaces of the inner holes can be prescribed a priori. In addition, heat flux distribution on the outer blade surface can be prescribed and iteratively enforced using optimization procedures. The prescribed heat flux distribution on the outer surface is iteratively approached by using the Sequential Unconstrained Minimization Technique (SUMT) to adjust the sizes and locations of the initially guessed circular holes. During each optimization iteration, a two-dimensional heat conduction equation is solved using direct Boundary Element Method (BEM) with linear temperature singularity distribution. For manufacturing purposes the additional constraints are enforced assuring the minimal prescribed blade wall thickness and spacing between the walls of two neighboring holes. The method is applicable to both single material (homogeneous) and coated (composite) turbine blades. Three different cases were tested to prove the feasibility and the accuracy of the method.
This paper adopts Taguchi’s signal-to-noise ratio analysis to optimize the dynamic characteristics of a SAW gas sensor system whose output response is linearly related to the input signal. The goal of the present dynamic characteristics study is to increase the sensitivity of the measurement system while simultaneously reducing its variability. A time- and cost-efficient finite element analysis method is utilized to investigate the effects of the deposited mass upon the resonant frequency output of the SAW biosensor. The results show that the proposed methodology not only reduces the design cost but also promotes the performance of the sensors.
The pulsating flows in both infinite and finite conical nozzles were analyzed theoretically. Sinusoidal pressure disturbances were impressed at the nozzle exit for the infinite nozzle and at either the inlet or at the exit for the case of a finite nozzle. The results have been calculated in terms of mass-flux response. The parameters involved are the Mach number and the modified Strouhal number; the inlet and exit radii ratio enters as an additional parameter for a finite nozzle. The results for an infinite conical nozzle indicate that, when the frequency is low, the quasistatic relationship between the pressure and mass-flux fluctuations holds; the same was reported in reference [1]. But, as the frequency increases, the dynamic characteristics of the pulsating flow become important. And, at high frequencies, the mass-flux response is less than the quasistatic value by an amount depending on the Mach number. For a finite conical nozzle the quasistatic condition is still valid if the frequency is low. However, at higher frequencies, the dynamic behavior becomes critically dependent on the frequency expressed in terms of w, for a given nozzle geometry and exit Mach number.
When a metal makes intimate contact with a semiconductor material, a Schottky barrier may be created. The Schottky contact has many important applications in the integrated circuit (IC) electronics field. The parameters of such contacts can be determined from their current-voltage (I-V) characteristics. The literature contains many proposals for extracting the contact parameters using graphical methods. However, such methods are generally applicable only to contacts with a forward bias, whereas many Schottky contacts actually operate under a reverse bias. Accordingly, the present study proposed a generalized reverse current-voltage (I-V) plot which enables the series resistance, barrier height, and ideality factor of a reverse biased Schottky contact to be extracted from a single set of I-V measurements. A theoretical derivation of the proposed approach was presented and a series of validation tests were then performed. The results show that the proposed method is capable of extracting reliable estimates of the contact parameters even in the presence of experimental noise.
An inverse design and optimization method is developed to determine the proper size and location of the circular shaped holes (coolant flow passages) in a composite turbine blade. The temperature distributions specified on the outer blade surface and on the surfaces of the inner holes can be prescribed a priori. In addition, heat flux distribution on the outer blade surface can be prescribed and iteratively enforced using optimization procedures. The prescribed heat flux distribution on the outer surface is iteratively approached by using the Sequential Unconstrained Minimization Technique (SUMT) to adjust the sizes and locations of the initially guessed circular holes. During each optimization iteration, a two-dimensional heat conduction equation is solved using direct Boundary Element Method (BEM) with linear temperature singularity distribution. For manufacturing purposes the additional constraints are enforced assuring the minimal prescribed blade wall thickness and spacing between the walls of two neighboring holes. The method is applicable to both single material (homogeneous) and coated (composite) turbine blades. Three different cases were tested to prove the feasibility and the accuracy of the method.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.