Background: To accurately and efficiently quantify forest carbon stocks, a good forest inventory using appropriate sampling that minimizes costs and human effort is needed for landowners who want to enter carbon offset markets. The most commonly used sampling unit is the fixed-area plot; however, it is time consuming, expensive, and is often less accurate than variable probability methods when resources are limited. Previous studies show that big BAF sampling is efficient at estimating volume, therefore, it is interesting to explore whether the efficiency can be extended to carbon. The study is conducted at Noonan Research Forest, which located 30 km northwest of Fredericton, New Brunswick, Canada. In this study, we compared count BAF effects and measure BAF effects on the overall sampling outcome and sampling error for total aboveground C and each C component (wood, bark, branches, and foliage) and explored the minimum sample size requirements and costs for different combinations of count and measure BAFs. Results: From our research, we found that the efficiency gained from estimating volume using big BAF sampling can be extended to carbon estimation. The minimum overall inventory cost from this study is $3500 Canadian, compared to a full Noonan inventory costs of $40,000 with 2% standard error. We also found that, similar to volume, count BAF has a larger effect on carbon estimation than measure BAF and the optimum choice of measure BAF depends on the choice of count BAF. The optimal count BAF and measure BAF combination for Noonan Research Forest was 2/24. Conclusion: Our results show that big BAF sampling was a very efficient sampling design for estimating carbon and significantly reduces overall inventory costs. Although big BAF sampling is not widely used in forest inventory, it should be considered by landowners facing the cost constraint barrier for entering carbon market and seeking a cost-effective inventory system for estimating carbon.
Efficient subsampling designs reduce forest inventory costs by focusing sampling efforts on more variable forest attributes. Sector subsampling is an efficient and accurate alternative to big basal area factor (big BAF) sampling to estimate the mean basal area to biomass ratio. In this study, we apply sector subsampling of spherical images to estimate aboveground biomass and compare our image-based estimates with field data collected from three early spacing trials on western Newfoundland Island in eastern Canada. The results show that sector subsampling of spherical images produced increased sampling errors of 0.3–3.4 per cent with only about 60 trees measured across 30 spherical images compared with about 4000 trees measured in the field. Photo-derived basal area was underestimated because of occluded trees; however, we implemented an additional level of subsampling, collecting field-based basal area counts, to correct for bias due to occluded trees. We applied Bruce’s formula for standard error estimation to our three-level hierarchical subsampling scheme and showed that Bruce’s formula is generalizable to any dimension of hierarchical subsampling. Spherical images are easily and quickly captured in the field using a consumer-grade 360° camera and sector subsampling, including all individual tree measurements, were obtained using a custom-developed python software package. The system is an efficient and accurate photo-based alternative to field-based big BAF subsampling.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.