A procedure for computer analyzing an optical coherence tomography (OCT) image of normal and precancerous oral mucosae is demonstrated to reasonably plot the boundary between epithelium (EP) and lamina propria (LP) layers, determine the EP thickness, and estimate the range of dysplastic cell distribution based on standard deviation (SD) mapping. In this study, 54 normal oral mucosa, 39 oral mild dysplasia, and 44 oral moderate dysplasia OCT images are processed for evaluating the diagnosis statistics. Based on SD mapping in an OCT image, it is found that the laterally average range percentages of 70% SD maximum level in the EP layer is a reasonably good threshold for differentiating moderate dysplasia from mild dysplasia oral lesion based on the OCT image analysis. The sensitivity and specificity in diagnosis statistics can reach 82 and 90%, respectively.
Au nanorings (NRIs), which have the localized surface plasmon resonance (LSPR) wavelength around 1058 nm, either with or without linked antibodies, are applied to SAS oral cancer cells for cell inactivation through the LSPR-induced photothermal effect when they are illuminated by a laser of 1065 nm in wavelength. Different incubation times of cells with Au NRIs are considered for observing the variations of cell uptake efficiency of Au NRI and the threshold laser intensity for cell inactivation. In each case of incubation time, the cell sample is washed for evaluating the total Au NRI number per cell adsorbed and internalized by the cells based on inductively coupled plasma mass spectrometry measurement. Also, the Au NRIs remaining on cell membrane are etched with KI/I2 solution to evaluate the internalized Au NRI number per cell. The threshold laser intensities for cell inactivation before washout, after washout, and after KI/I2 etching are calibrated from the circular area sizes of inactivated cells around the illuminated laser spot center with various laser power levels. By using Au NRIs with antibodies, the internalized Au NRI number per cell increases monotonically with incubation time up to 24 h. However, the number of Au NRI remaining on cell membrane reaches a maximum at 12 h in incubation time. The cell uptake behavior of an Au NRI without antibodies is similar to that with antibodies except that the uptake NRI number is significantly smaller and the incubation time for the maximum NRI number remaining on cell membrane is delayed to 20 h. By comparing the threshold laser intensities before and after KI/I2 etching, it is found that the Au NRIs remaining on cell membrane cause more effective cancer cell inactivation, when compared with the internalized Au NRIs.
The characterization results of the localized surface plasmon resonance (LSPR) of Au nanorings (NRs) with optical coherence tomography (OCT) are first demonstrated. Then, the diffusion behaviors of Au NRs in mouse liver samples tracked with OCT are shown. For such research, aqueous solutions of Au NRs with two different localized surface plasmon resonance (LSPR) wavelengths are prepared and characterized. Their LSPR-induced extinction cross sections at 1310 nm are estimated with OCT scanning of solution droplets on coverslip to show reasonably consistent results with the data at individual LSPR wavelengths and at 1310 nm obtained from transmission measurements of Au NR solutions and numerical simulations. The resonant and non-resonant Au NRs are delivered into mouse liver samples for tracking Au NR diffusion in the samples through continuous OCT scanning for one hour. With resonant Au NRs, the average A-mode scan profiles of OCT scanning at different delay times clearly demonstrate the extension of strong backscattering depth with time. The calculation of speckle variance among successive OCT scanning images, which is related to the local transport speed of Au NRs, leads to the illustrations of downward propagation and spreading of major Au NR motion spot with time.
The conventional optical coherence tomography (OCT) images based on enhanced scattering and the photothermal (PT) images based on enhanced absorption of the localized surface plasmon (LSP) resonance of Au nanorings (NRIs) in a bio-tissue sample are demonstrated with the scans of an OCT system (1310-nm system), in which the spectral range covers the LSP resonance peak wavelength, and another OCT system (1060-nm system), in which the spectral range is away from the LSP resonance peak wavelength. A PT image is formed by evaluating the modulation frequency (400 Hz) response of an excitation laser with its wavelength (1308 nm) close to the LSP resonance peak at 1305 nm of the Au NRI solution. With the scan of the 1310-nm OCT system, the Au NRI distribution in the bio-tissue sample can be observed in both conventional OCT and PT images. However, with the scan of the 1060-nm OCT system, the Au NRI distribution can be clearly observed only in the PT image. The diffusion process of Au NRIs in the bio-tissue sample can be traced with the scan of either OCT system. Based on phantom experiments, it is shown that the PT image can help in resolving the ambiguity of a conventional OCT image between the enhanced scattering of Au NRIs and the strong scattering of a tissue structure in the 1310-nm OCT scanning. Also, under the condition of weak intrinsic sample scattering, particularly in the scan of the 1060-nm system, the PT signal can be lower than a saturating level, which is determined by the excitation power. By increasing OCT system signal-to-noise ratio or M-mode scan time, the PT signal level can be enhanced.
This study proposes a new approach to improve the phase stability for swept-source optical coherence tomography (SS-OCT) with single-channel acquisition. This approach can improve the phase instability due to the A-scan trigger jitter from the swept source, or the asynchronization between the A-scan trigger and high-speed digitizer, which enables the visualization of vascular structures by SS-OCT. Aside from reducing the phase noise of the OCT system, only one channel is required for the A-scan trigger, data storage, and wavelength calibration by implementing the proposed approach. Finally, human skin was scanned in vivo to demonstrate the vascular images.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.