Two Zn(ii) complexes based on tetrazol were prepared. Nanoparticles of the complexes can inhibit the proliferation of cancer cells in vitro. This work provided a strategy on designing anticancer materials based on coordination complexes.
As a kind of multifunctional materials with high porosity, tunable pore structure and easy functionalization, coordination complexes have been widely used in various fields. Here, three complexes were prepared by self‐assembly with Co(II) ions using tetrazolylacetic acids as ligands, 2,2′,2′′‐(benzene‐1,3,5‐triyltris(2H‐tetrazole‐5,2‐diyl)) triacetic acid (H3tzpha), 2‐(5‐(pyrazin‐2‐yl)‐2H‐tetrazol‐2‐yl) propanoic acid (Hpztzma) and 2‐(5‐(pyridin‐2‐yl)‐2H‐tetrazol‐2‐yl) acetic acid (Hpytza), and were characterized by X‐ray crystallography. These complexes can also self‐assemble into nanoparticles (NPs) in aqueous solution by nanocoprecipitation. In vitro CCK‐8 assay on three kind of human cancer cells (HeLa, HepG2 and Huh7) cells showed these Co(II) complexes have the best cytotoxicity against HeLa cells. And complex 1 had a half maximal inhibitory concentration (IC50 value) of 14.8 μg mL−1, which was superior to 16.5 μg mL−1 and 15.2 μg mL−1 of complex 2 and 3. In addition, the effect of different ligands on cancer cell ablation was explored. The results showed the three NPs can effectively inhibit the proliferation of cancer cells in vitro and provided a strategy on designing highly efficient anticancer materials based on coordination complexes.
Copper (II) containing coordination complexes have attracted much attention for chemodynamic therapy (CDT) against cancer cells. In this study, the bimetallic nanobooster [Gd2Cu(L)2(H2O)10]·6H2O was prepared by a solvothermal method based on tetrazole carboxylic acid ligand H4L [H4L = 3,3-di (1H-tetrazol-5-yl) pentanedioic acid]. It showed considerable cytotoxicity toward three kinds of human cancer cells (HeLa, HepG2, and HT29). The MTT assay showed that the IC50 (half-maximal inhibitory concentration) of the complex NPs on HeLa cells (4.9 μg/ml) is superior to that of HepG2 (11.1 μg/ml) and HT29 (5.5 μg/ml). This result showed that [Gd2Cu(L)2(H2O)10]·6H2O NPs can inhibit cell proliferation in vitro and may be potential candidates for chemodynamic therapy. In addition, the cytotoxicity was also confirmed by the trypan blue staining experiment. The results promise the great potential of Gd(III)–Cu(II) for CDT against cancer cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.