Abstract-This paper describes a bidirectional, differential, 16 Gb/s per link memory interface that includes a Controller and an emulated DRAM physical interface (PHY) designed in 65 nm CMOS. To achieve high data rate, the interface employs the following technology ingredients: asymmetric equalization, asymmetric timing calibration, asymmetric link margining, inductor based (LC) PLLs, multi-phase error correction, and a data dependent regulator. At 16 Gb/s, this interface achieves a unit-interval to inverter FO4 ratio of 2.8 (Controller) and 1.4 (DRAM) and operates in a channel with 15 dB loss at Nyquist. Under such bandwidth limitations on and off chip, the Controller and DRAM PHYs consume 13 mW/Gb/s and 8 mW/Gb/s, respectively. Using PRBS 2 11 1, the link achieves a timing margin of 0.19 UI at a BER of 1e-12 for both read and write operations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.