It is well-known that hepatic iron dysregulation, which is harmful to health, can be caused by stress. The aim of the study was to evaluate chronic variable stress (CVS) on liver damage, hepatic ferrous iron deposition and its molecular regulatory mechanism in rats. Sprague Dawley rats at seven weeks of age were randomly divided into two groups: a control group (Con) and a CVS group. CVS reduces body weight, but increases the liver-to-body weight ratio. The exposure of rats to CVS increased plasma aspartate aminotransferase (AST), alkaline phosphatase (ALP) and hepatic malondialdehyde (MDA) levels, but decreased glutathione peroxidase (GSH-Px) activity, resulting in liver damage. CVS lowered the total amount of hepatic iron content, but induced hepatic Fe(II) accumulation. CVS up-regulated the expression of transferrin receptor 1 (TFR1) and ZRT/IRT-like protein 14 (ZIP14), but down-regulated ferritin and miR-181 family members. In addition, miR-181 family expression was found to regulate ZIP14 expression in HEK-293T cells by the dual-luciferase reporter system. These results indicate that CVS results in liver damage and induces hepatic Fe(II) accumulation, which is closely associated with the up-regulation of ZIP14 expression via the miR-181 family pathway.
Modulating retro-reflector (MRR) free-space optical (FSO) communication technology presents a bright future for realizing the small size, weight, and power (SWaP) design of one end of the optical link, facilitating the further application of the FSO communication to the small platforms. However, the limited field-of-view (FOV) of MRR impedes its wide employment. In this paper, a novel wide-FOV MRR using an image space telecentric lens is proposed and a bidirectional FSO communication system is experimentally demonstrated using this MRR with a single light source. The performance of the telecentric lens between the transceiver and terminal is assessed by simulation and also validated by experimental results, with a coupling loss less than 9.1 dB within a FOV of 110°. Both 10-Gbit/s on-off keying (OOK) downstream and upstream signals for free space communication at different incident angles are successfully realized using this designed wide-FOV MRR. The experimental results validate the proposed MRR has a FOV of up to 110° where the measured bit error rate (BER) is lower than 3.8×10 -3 for both downstream and upstream signals. To the best of our knowledge, this is the largest FOV ever reported for MRRs in high-speed bidirectional FSO communication systems. Index Terms-Free-space optical communication; modulating retro-reflector; image space telecentric lens; wide field-of-view. I. INTRODUCTION N recent years, with the further application of 5G technology, artificial intelligence, big data, and other related technologies, the development trend of the Internet of Things (IoT) makes the communication traffic surge, which puts forward higher requirements for the performance of communication systems [1], [2]. Traditional radio-frequency (RF) communication is approaching to its limit due to limited
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.