High-efficiency production of xylene/trimethylbenzene from benzene/toluene with methanol is a potential way to promote the implementation on the coupled cycle development strategy of petrochemical and coal chemical industry and optimize the resource structure. At the same time, relying on the innovation of catalytic new materials, physical chemistry, intelligent capture technology, process engineering, and other principles and methods, p-xylene (PX) and trimethylbenzene (TMB) with higher added value were prepared by C6-8~arene methylation, which could elevate the level of methylation field and improve the competitiveness of the industry. This paper focuses on the one-step methylation reaction of benzene with methanol or toluene with methanol to obtain high-purity p-xylene (BM-PX/TM-PX), and the one-step methylation reaction of xylene with methanol to obtain mesitylene (XM-TMB). The methylation reaction mechanism and the preparation strategy of a high-performance catalyst were reviewed. The high selectivity of PX obtained by precisely controlling the pore size and acid site distribution of zeolites was emphasized. Meanwhile, the current research progress of TMB, the kinetic/thermodynamics of the BM-PX/TM-PX, and XM-TMB methylation reaction were described. Based on a literature research and the conclusion of our research group, the mechanism of methylation reaction process was expounded. Finally, the new research direction of catalysts used and reaction process in methylation reaction were prospected in order to guide the rapid development of this field.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.