We have studied the effect of random long-range connections in chaotic thermosensitive neuron networks with each neuron being capable of exhibiting diverse bursting behaviors, and found stochastic synchronization and optimal spatiotemporal patterns. For a given coupling strength, the chaotic burst-firings of the neurons become more and more synchronized as the number of random connections (or randomness) is increased and, rather, the most pronounced spatiotemporal pattern appears for an optimal randomness. As the coupling strength is increased, the optimal randomness shifts towards a smaller strength. This result shows that random long-range connections can tame the chaos in the neural networks and make the neurons more effectively reach synchronization. Since the model studied can be used to account for hypothalamic neurons of dogfish, catfish, etc., this result may reflect the significant role of random connections in transferring biological information.
A high optical quality Nd:SrLaAlO4 (Nd:SLA) crystal was grown using the Czochralski method and showed broad fluorescence spectrum with a full width at half maximum value of 34 nm, which is beneficial for generating femtosecond laser pulses. A stable diode-pumped passively mode-locked femtosecond Nd:SLA laser with 458 fs pulse duration was achieved for the first time at a central wavelength of 1077.9 nm. The average output power of the continuous-wave mode-locked laser was 520 mW and the repetition rate was 78.5 MHz.
The interactions between a size-expanded Guanine analogue x-Guanine (xG) and gold nanoclusters, Au n (n ¼ 2, 4, 6, and 8), were studied theoretically using density functional theory. Geometries of neutral complexes were optimized using the B3LYP functional with the 6-31þG(d,p) basis set for xG and the LANL2DZ basis set for gold clusters. The binding modes, interaction strength, and the charge-transfer properties of different Au n -xG complexes were investigated. Natural population analysis was performed for natural bond order charges. It was found that gold nanoclusters form stable complexes with xG and these binding results in a substantial amount of electronic charge being transferred from xG to the gold clusters. The vertical first ionization potential, electron affinity, Fermi Level, and the HOMO-LUMO gap of xG and its complexes with gold nanoclusters were also analyzed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.