Herein, we report a homemade new Nd:YAG crystal rod that contains a gradient dopant of 0.39–0.80 at.%
Nd
3
+
from end to end, achieving superior performance of a 2 kHz Nd:YAG pulse laser at 1064 nm. The optical-to-optical conversion efficiency reached 53.8%, and the maximum output power of the laser was 24.2 W, enhanced by 35.9% compared with a uniform crystal rod with the same total concentration of
Nd
3
+
. Significantly, our experiments revealed that the gradient concentration crystal produced a relatively even pumping distribution along the rod axis, greatly reducing the temperature gradient as well as having a smaller thermal effect. The pump and thermal distribution smoothing obviously improved the features of laser oscillation and output.
An electro-optically Q-switched high-energy Er:YAG laser with two polarizers is proposed. By using two Al(2)O(3) polarizing plates and a LiNbO(3) crystal with Brewster angle, the polarization efficiency is significantly improved. As a result, 226 mJ pulse energy with 62 ns pulse width is achieved at the repetition rate of 3 Hz, the corresponding peak power is 3.6 MW. To our knowledge, such a high peak power has not been reported in literature. With our designed laser, in-vitro teeth were irradiated under Q-switched and free-running modes. Results of a laser ablation experiment on hard dental tissue with the high-peak-power laser demonstrates that the Q-switched Er:YAG laser has higher ablation precision and less thermal damage than the free-running Er:YAG laser.
We report on a high-peak-power electro-optically
Q
-switched laser emitting a near-diffraction-limited beam profile at 1064 nm by using a gradient-doped Nd:YAG crystal. The gradient-doped crystal features a unique combination of a reduced thermal lens effect through effectively spreading the heat load distribution within its volume. Its performance is compared with those of Nd:YAG crystals with uniform volume doping distribution operating in the
Q
-switched regime with the same laser configuration, demonstrating the higher average and peak power achievable with the gradient-doped crystal. The maximum average output power amounts to 6.9 W at a pulse repetition rate of 2 kHz, which corresponds to a maximum peak power of
∼
585
k
W
. Compared to homogeneous dopant crystals, the slope efficiency and average output power increased by 30.8% and 21.1%, respectively.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.