Traditional vision registration technologies require the design of precise markers or rich texture information captured from the video scenes, and the vision-based methods have high computational complexity while the hardware-based registration technologies lack accuracy. Therefore, in this paper, we propose a novel registration method that takes advantages of RGB-D camera to obtain the depth information in real-time, and a binocular system using the Time of Flight (ToF) camera and a commercial color camera is constructed to realize the three-dimensional registration technique. First, we calibrate the binocular system to get their position relationships. The systematic errors are fitted and corrected by the method of B-spline curve. In order to reduce the anomaly and random noise, an elimination algorithm and an improved bilateral filtering algorithm are proposed to optimize the depth map. For the real-time requirement of the system, it is further accelerated by parallel computing with CUDA. Then, the Camshift-based tracking algorithm is applied to capture the real object registered in the video stream. In addition, the position and orientation of the object are tracked according to the correspondence between the color image and the 3D data. Finally, some experiments are implemented and compared using our binocular system. Experimental results are shown to demonstrate the feasibility and effectiveness of our method.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.