The cytidine analogues azacytidine and 5-aza-2'-deoxycytidine (decitabine) are commonly used to treat myelodysplastic syndromes, with or without a myeloproliferative component. It remains unclear whether the response to these hypomethylating agents results from a cytotoxic or an epigenetic effect. In this study, we address this question in chronic myelomonocytic leukaemia. We describe a comprehensive analysis of the mutational landscape of these tumours, combining whole-exome and whole-genome sequencing. We identify an average of 14±5 somatic mutations in coding sequences of sorted monocyte DNA and the signatures of three mutational processes. Serial sequencing demonstrates that the response to hypomethylating agents is associated with changes in DNA methylation and gene expression, without any decrease in the mutation allele burden, nor prevention of new genetic alteration occurence. Our findings indicate that cytosine analogues restore a balanced haematopoiesis without decreasing the size of the mutated clone, arguing for a predominantly epigenetic effect.
Glioma patients whose tumors carry a mutation in Isocitrate Dehydrogenase 1 (IDH1R132H) are younger at diagnosis and live longer. IDH1 mutations co-occur with other molecular lesions, such as 1p/19q co-deletion, inactivating mutations in the tumor suppressor protein 53 (TP53) gene, and loss of function mutations in alpha thalassemia/mental retardation syndrome X-linked gene (ATRX). All adult low-grade gliomas (LGGs) harboring ATRX loss also express the IDH1R132H mutation. The current molecular classification of LGGs is based, in part, on the distribution of these mutations. We modelled the molecular glioma subtype which harbors IDH1R132H, and TP53 and ATRX inactivating mutations. Previously, we established that ATRX deficiency, in the context of wt-IDH1, induces genomic instability, impairs non homologous end joining DNA repair, and increases sensitivity to DNA damaging therapies. In this study, we investigated the function of IDH1R132H in the context of TP53 and ATRX loss. We discovered that IDH1R132H expression in the genetic context of ATRX and TP53 gene inactivation: (i) increases median survival (MS) in the absence of any treatment, (ii) enhances DNA damage response (DDR) via epigenetic upregulation of the Ataxia-telangiectasia mutated (ATM) signaling pathway, and (iii) elicits tumor radioresistance. Accordingly, pharmacological inhibition of ATM or checkpoint kinase 1 and 2 (CHK1/2), essential kinases in the DDR, restored the tumors’ radiosensitivity. Translation of these findings to IDH1132H glioma patients harboring TP53 and ATRX loss, could significantly improve the therapeutic efficacy of radiotherapy, and consequently patient survival.
We performed cytosine methylation sequencing on genetically diverse AML patients and found leukemic DNA methylation patterning is primarily driven by non-promoter regulatory elements and CpG shores. Enhancers displayed stronger differential methylation than promoters, consisting predominantly of hypomethylation. AMLs with dominant hypermethylation featured greater epigenetic disruption of promoters, while those with dominant hypomethylation displayed greater disruption of distal and intronic regions. Mutations in IDH and DNMT3A had opposing and mutually exclusive effects on the epigenome. Notably, co-occurrence of both mutations resulted in epigenetic antagonism, with most CpGs affected by either mutation alone no longer affected in double mutant AMLs. Importantly, this epigenetic antagonism precedes malignant transformation and can be observed in pre-leukemic LSK cells from Idh2R140Q or Dnmt3aR882H single and, Idh2R140Q/Dnmt3aR882H double mutant mice. Notably, IDH/DNMT3A double mutant AMLs manifested upregulation of RAS signaling signature and displayed unique sensitivity to MEK inhibition ex vivo as compared to AMLs with either single mutation.
Aging is associated with functional decline of hematopoietic stem cells (HSC) as well as an increased risk of myeloid malignancies. We performed an integrative characterization of epigenomic and transcriptomic changes, including single-cell RNA sequencing, during normal human aging. Lineage − CD34 + CD38 − cells [HSC-enriched (HSCe)] undergo age-associated epigenetic reprogramming consisting of redistribution of DNA methylation and reductions in H3K27ac, H3K4me1, and H3K4me3. This reprogramming of aged HSCe globally targets developmental and cancer pathways that are comparably altered in acute myeloid leukemia (AML) of all ages, encompassing loss of 4,646 active enhancers, 3,091 bivalent promoters, and deregulation of several epigenetic modifi ers and key hematopoietic transcription factors, such as KLF6, BCL6, and RUNX3. Notably, in vitro downregulation of KLF6 results in impaired differentiation, increased colony-forming potential, and changes in expression that recapitulate aging and leukemia signatures. Thus, age-associated epigenetic reprogramming may form a predisposing condition for the development of age-related AML. SIGNIFICANCE: AML, which is more frequent in the elderly, is characterized by epigenetic deregulation. We demonstrate that epigenetic reprogramming of human HSCs occurs with age, affecting cancer and developmental pathways. Downregulation of genes epigenetically altered with age leads to impairment in differentiation and partially recapitulates aging phenotypes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.