Purpose -The main purpose of this paper is to conduct an in-depth theoretical review and analysis for the fields of knowledge management (KM) and investigate the future research trend about KM.Design/methodology/approach -At first, few theoretical basis about KM which include definitions and stages about KM have been summarized and analyzed. Then a comprehensive review about the major approaches for designing the KM system from different perspectives including knowledge representation and organization, knowledge sharing and performance measure for KM has been conducted.Findings -The contributions of this paper will be useful for both academics and practitioners for the study of KM.Originality/value -For this research, the focus is on conducting an in-depth theoretical review and analysis of KM.
This study focuses on predicting stock closing prices by using recurrent neural networks (RNNs). A long short-term memory (LSTM) model, a type of RNN coupled with stock basic trading data and technical indicators, is introduced as a novel method to predict the closing price of the stock market. We realize dimension reduction for the technical indicators by conducting principal component analysis (PCA). To train the model, some optimization strategies are followed, including adaptive moment estimation (Adam) and Glorot uniform initialization. Case studies are conducted on Standard & Poor's 500, NASDAQ, and Apple (AAPL). Plenty of comparison experiments are performed using a series of evaluation criteria to evaluate this model. Accurate prediction of stock market is considered an extremely challenging task because of the noisy environment and high volatility associated with the external factors. We hope the methodology we propose advances the research for analyzing and predicting stock time series. As the results of experiments suggest, the proposed model achieves a good level of fitness.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.