The rapid deployment of 5G spectrum by the telecommunication industry is intended to promote better connectivity and data integration among various industries. However, since exposures to radio frequency radiations (RFR) >2.4 GHz are still uncommon, concerns about their potential health impacts are ongoing. In this study, we used the embryonic zebrafish model to assess the impacts of a 3.5 GHz RFR on biology-a frequency typically used by 5G-enabled cell phones and lies within the 4G and 5G bandwidth. We established a plate-based exposure setup for RFRs, exposed developing zebrafish to 3.5 GHz RFR, specific absorption rate (SAR) � 8.27 W/Kg from 6 h post fertilization (hpf) to 48 hpf, and measured a battery of morphological and behavioral endpoints at 120 hpf. Our results revealed no significant impacts on mortality, morphology or photomotor response and a modest inhibition of startle response suggesting some levels of sensorimotor disruptions. This suggests that the cell phone radiations at low GHz-level frequencies are likely benign, with subtle sensorimotor effects. Through this assessment, we have established a robust setup for zebrafish RFR exposures readily amenable to testing various powers and frequencies. Future developmental exposure studies in zebrafish will evaluate a wider portion of the radio frequency spectrum to discover the bioactive regions, the potential molecular targets of RFR and the potential long-term effects on adult behavior.
Ranging accuracy is a critical parameter in time-based indoor positioning systems. Indoor environments often have complex structures, which make centimeter-level-accurate ranging a challenging task. This study proposes a new distance measurement method to decrease the ranging error in multipath environment. Our method uses an artificial neural network that utilizes the received signal strength indicator along with a signal’s angle of arrival to calculate the line-of-sight distance. This combination results in a significant reduction of the error caused by multipath effects that common RSSI-based methods suffer from. It outperforms traditional ranging methods while the implementation complexity is kept low.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.