A highly sensitive, non-invasive, and rapid HBV (Hepatitis B virus) screening method combining membrane protein purification with silver nanoparticle-based surface-enhanced Raman scattering (SERS) spectroscopy was developed in this study. Reproducible serum protein SERS spectra were obtained from cellulose acetate membrane-purified human serum from 94 HBV patients and 89 normal groups. Tentative assignments of serum protein SERS spectra showed that the HBV patients primarily led to specific biomedical changes of serum protein. Principal components analysis and linear discriminate analysis were introduced to analyse the obtained spectra, with the diagnostic sensitivity of 92.6% and specificity of 77.5% were achieved for differentiating HBV patients from normal groups.
Monitoring the levels of cancer biomarkers is essential for cancer diagnosis and evaluation. In this study, a novel sandwich type sensing platform based on surface-enhanced Raman scattering (SERS) technology was developed for the detection of carcinoembryonic antigen (CEA), with a limit of detection (LOD) of 0.258 ng/mL. In order to achieve sensitive detection of CEA in complex samples, gold nanoparticle monolayer modified with CEA antibodies and with aptamer-functionalized probes was fabricated to target CEA. Two gold layers were integrated into the SERS platform, which greatly enhanced the signal of the probe by generating tremendous “hot spots”. Meanwhile, the intensity ratio of Raman probes and the second-order peak of the silicon wafer was used to achieve dynamic calibration of the Raman probe signal. Excitingly, this sensing platform was capable of distinguishing cancer patients from healthy individuals via CEA concentrations in blood samples with the accuracy of 100%. This sandwich structure SERS sensing platform presented promising potential to be an alternative tool for clinical biomarker detection in the field of cancer diagnosis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.