To study the influence of open-pit coal mining on the surrounding soil environment and human health, this study selected the Hongshaquan coal mine in Xinjiang as the research area and took 31 soil samples from the dump and artificial forest of the mining area. The contents of seven heavy metals (As, Cd, Cr, Cu, Ni, Pb and Zn) in the soil were analyzed. The pollution index method, geoaccumulation index method (Igeo), potential ecological risk index method, health ecological risk assessment model and principal component analysis (PCA) were used to evaluate and analyze the heavy metal pollution, potential ecological risk and health ecological risk of the soil. The results showed that compared with the background value of soil in Xinjiang, except for Pb, other heavy metal elements were essentially pollution-free and belonged to the low ecological risk area. The health risk assessment model showed that Pb and As were the main pollution factors of noncarcinogenic risk, and that exposure to Ni, Pb and As had a lower carcinogenic risk. The PCA showed that Cu, Cr, Ni, Pb, As and Zn in the dump were from transportation and industrial activities, Cd was from natural resources, and Cr, Zn, Ni, Cd and Pb were from transportation in the artificial forest. Cu came from industrial sources and As from soil parent material. The dump was more seriously disturbed by human factors than by artificial forests. Our research provides a reference for heavy metal pollution and source analysis caused by mining.
An accurate assessment of root respiration in mine reclaimed soil is important for effectively evaluating mining area ecosystem. This study investigated dynamic changes in root respiration and contribution of root respiration to total soil respiration (Rr/Rt ratio) during the non-growing season in mine reclaimed soil with different covering soil thicknesses. According to covering soil thicknesses, the study area was divided into four sites: 10-25 cm (site A), 25-45 cm (site B), 45-55 cm (site C) and 55-65 cm (site D). From November 2017 to April 2018 (except February in 2018), the soil respiration, root respiration, temperature at 5 cm, water content and root biomass were measured. The results showed that soil temperature and root respiration exhibited similar diurnal and monthly variations. The root respiration was strongly influenced by soil temperature during the non-growing season, which showed an exponential and positive relationship with soil temperature (P<0.001). The root respiration varied with the covering soil thickness and was the greatest with the covering soil thickness at 25–45 cm. The Rr/Rt ratio also exhibited monthly variations. During the non-growing season, the mean value of the Rr/Rt ratio was 51.15% in mine reclaimed soil. The study indicated that root respiration was the primary source of soil respiration and important to estimate the potential emission of soil CO2 at regional scale in mine reclaimed soil.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.