The nonlinear and heterogeneous responses of nutrients to eutrophication control measures are a major challenge for in situ treatment engineering design, especially for large water bodies. Tackling the problem calls for a full understanding of potential water quality responses to various treatment schemes, which cannot be fulfilled by empirical-based methods or small-scale tests. This paper presents a methodology for Phoslock application based on the idea of object-oriented intelligent engineering design (OOID), which includes numerical simulation to explore the features of responses to numerous assumed schemes. A large plateau lake in Southwestern China was employed as a case study to illustrate the characteristics of the water quality response and demonstrate the applicability of this new approach. It was shown by the simulation and scenario analysis that the water quality response to Phoslock application always reflected nonlinearity and spatiotemporal heterogeneity, and always varied with objects, boundary conditions, and engineering design parameters. It was also found that some design parameters, like release position, had a significant impact on efficiency. Thus, a remarkable improvement could be obtained by cost-effective analysis based on scenarios using combinations of design parameters.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.