Breathalyzer is a common approach to measuring blood alcohol concentration (BAC) levels of individuals suspected of drunk driving. Nevertheless, this device is relatively high-cost, inconvenient for people with limited breathing capacity, and risky for COVID-19 exposure. Here, we designed and developed a smart wristband integrating a real-time noninvasive sweat alcohol metal oxide (MOX) gas sensor with a Drunk Mate, an Internet of Thing (IoT)-based alarming system. A MOX sensor acquired transdermal alcohol concentration (TAC) which was converted to BAC and sent via the IoT network to the Blynk application platform on a smartphone, triggering alarming messages on LINE Notify. A user would receive an immediate alarming message when his BAC level reached an illegal alcohol concentration limit (BAC 50 mg%; TAC 0.70 mg/mL). The sensor readings showed a high linear correlation with TAC (R2 = 0.9815; limit of detection = 0.045 mg/mL) in the range of 0.10–1.05 mg/mL alcohol concentration in artificial sweat, achieving an accuracy of 94.66%. The sensor readings of ethanol in water were not statistically significantly different (p > 0.05) from the measurements in artificial sweat and other sweat-related solutions, suggesting that the device responded specifically to ethanol and was not affected by other electrolytes in the artificial sweat. Moreover, the device could continuously monitor TAC levels simulated in real-time in an artificial sweat testing system. With the integration of an IoT-based alarming system, the smart wristband developed from a commercial gas sensor presented here offers a promising low-cost MOX gas sensor monitoring technology for noninvasive and real-time sweat alcohol measurement and monitoring.
Adsorption of Zn(II) and Pb(II) from aqueous solution were studied by using modified coir pith as an adsorbent. The extended adsorption conditions were investigated as a function of calcination temperature, contact time, adsorbent size, initial pH of solution and initial Zn(II) and Pb(II) concentrations. The adsorption capacity increased rapidly in first 5 minute and reached equilibrium in 120 minutes for Zn(II) and 10 minutes for Pb(II). In case of Zn(II); the results showed that the calcination temperature of modified coir pith above 600oC gave the higher adsorption capacity. The sizes of modified coir pith have no effect on the adsorption capacity. The adsorption capacity increased with increasing initial solution pH value. In case of Pb(II); the calcination temperature of modified coir pith showed no effect on the adsorption capacity. The sizes of modified coir pith showed a little effect on the adsorption capacity. The adsorption capacity increased with increasing of initial solution pH value up to pH of 3 and then stable. The results also corresponded with the Langmuir and Freundlich isotherms and pseudo second order kinetic adsorption models. The modified coir pith gave a higher Zn(II) and Pb(II) adsorption capacity of 29.33 mg Zn(II)/g adsorbent and 36.50 mg Pb(II)/g adsorbent, respectively.
The aim of this research was to investigate interactions in the removal of manganese from contaminated water by oxidation through an ozonation process. The manganese oxidation was used to oxidize manganese ions (Mn2+) in solution to manganese dioxide (MnO2) in its brown solid form, in order to reduce levels of manganese ions in the water to below the acceptable limit for drinking water (0.05 mg L-1). In this study, the independent effects such as the initial concentration of manganese (5, 10 and 15 mg L-1), initial pH of solutions (3, 4 and 5) and ozone concentrations (10.970, 21.945 and 32.920 mg L-1) designed Box-Behnken Design (BBD) as a one of the design of experiments were examined foroptimal conditions and including main effects and their interactions. The ozone concentration in the reactor was increased with increasing operating time of an ozone generator and linearly increased at the rate about 2.194 mg O3 L-1 min-1. The experimental results indicated that all factors significantly affected manganese removal rate. Initial manganese concentration was negatively correlated, while pH and ozone concentration were both positively correlated with removal percentage. Main, square and interaction effects were significant on percent manganese removal. Additionally, percent removal was reduced with increasing ozone concentrations because at higher ozone levels, MnO2 in solid form was converted to MnO4- and re-dissolved into solution- a process known as over-oxidation. The maximal condition, the removal efficiency of manganese in oxidation reaction by ozonation process in initial manganese concentration 5 mg L-1, pH 4.0 and ozone concentration 21.945 mg L-1 was appeared more than 100 %. The present study indicates that manganese ions can be effectively removed from drinking water by ozonation.
The Hepatitis-B (HBV) epidemic's dynamic can be presented as a compartment model. Determining the HBV epidemic control strategy can be considered a nonlinear feedback control problem. The sliding mode controller (SMC) is an effective feedback control method for controlling the dynamical system under disturbances. Recently, the SMC based on fractional order calculus can provide preferable characteristics for a control system such as robustness and convergence rate. In this study, the HBV epidemic system's control policy is proposed using the fractional order sliding mode controller (FOSMC). The control policy with multiple measures including vaccination, isolation, and treatment is formulated to manipulate the susceptible and the infected subpopulations to the desired level. The Lyapunov-based approach is proven for stability analysis. The control policy is applied to the simulation example to verify the feasibility of the proposed FOSMC method. The simulation results are compared with those of the integer order SMC. By the proposed method, the results reveal that the susceptible and infected subpopulations are driven to the desired levels under disturbances with a higher convergence rate compared to that of the integer one. Moreover, the proposed FOSMC method can reduce the chattering occurrence which is the primary drawback of the SMC method.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.