The lateral flow test has become the standard bioassay format in low-resource settings because it is rapid, easy to use, low in cost, uses reagents stored in dry form, and is equipment-free. However, lateral flow tests are often limited to a single chemical delivery step and not capable of the multi-step processing characteristic of high performance laboratory-based assays. To address this limitation, we are developing a paper network platform that extends the conventional lateral flow test to two dimensions; this allows incorporation of multi-step chemical processing, while still retaining the advantages of conventional lateral flow tests. Here we demonstrate this format for an easy-to-use, signal-amplified sandwich format immunoassay for the malaria protein PfHRP2. The card contains reagents stored in dry form such that the user need only add sample and water. The multiple flows in the device are activated in a single user step of folding the card closed; the configuration of the paper network automatically delivers the appropriate volumes of i) sample plus antibody conjugated to a gold particle label, ii) a rinse buffer, and iii) a signal amplification reagent to the capture region. These results highlight the potential of the paper network platform to enhance access to high-quality diagnostic capabilities in low-resource settings in the developed and developing worlds.
Lateral flow tests (LFTs) are an ingenious format for rapid and easy-to-use diagnostics, but they are fundamentally limited to assay chemistries that can be reduced to a single chemical step. In contrast, most laboratory diagnostic assays rely on multiple timed steps carried out by a human or a machine. Here, we use dissolvable sugar applied to paper to create programmable flow delays and present a paper network topology that uses these time delays to program automated multi-step fluidic protocols. Solutions of sucrose at different concentrations (10-70% of saturation) were added to paper strips and dried to create fluidic time delays spanning minutes to nearly an hour. A simple folding card format employing sugar delays was shown to automate a four-step fluidic process initiated by a single user activation step (folding the card); this device was used to perform a signal-amplified sandwich immunoassay for a diagnostic biomarker for malaria. The cards are capable of automating multi-step assay protocols normally used in laboratories, but in a rapid, low-cost, and easy-to-use format.
Point-of-care diagnostic assays that are rapid, easy-to-use, and low-cost are needed for use in low-resource settings; the lateral flow test has become the standard bioassay format in such settings because it meets those criteria. However, for a number of analytes, conventional lateral flow tests lack the sensitivity needed to have clinical utility. To address this limitation, we are developing a paper network platform that extends the conventional lateral flow test to two dimensions. The two-dimensional structures allow incorporation of multi-step processes for improved sensitivity, while still retaining the positive aspects of conventional lateral flow tests. Here we create an easy-to-use, signal-amplified immunoassay based on a modified commercial strip test for human chorionic gonadotropin, the hormone used to detect pregnancy, and demonstrate an improved limit of detection compared to a conventional lateral flow assay. These results highlight the potential of the paper network platform to enhance access to high-quality diagnostic capabilities in low-resource settings in the developed and developing worlds.
We demonstrate a novel method for controlling fluid flow in paper-based devices. The method delays fluid progress through a porous channel by diverting fluid into an absorbent pad-based shunt placed into contact with the channel. Parameters to control the delay include the length and the thickness of the shunt. Using this method, reproducible delays ranging from 3 to 20 minutes were achieved. A simple electrical circuit model was presented and used to predict the delays in a system. Results from the model showed good agreement with experimental observations. Finally, the shunts were used for the sequential delivery of fluids to a detection zone in a point-of-care compatible folding card device using biochemical reagents for the amplified detection of the malaria protein PfHRP2.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.