Despite the progressive advances, current standards of treatments for peripheral nerve injury do not guarantee complete recovery. Thus, alternative therapeutic interventions should be considered. Complementary and alternative medicines (CAMs) are widely explored for their therapeutic value, but their potential use in peripheral nerve regeneration is underappreciated. The present systematic review, designed according to guidelines of Preferred Reporting Items for Systematic Review and Meta-Analysis Protocols, aims to present and discuss the current literature on the neuroregenerative potential of CAMs, focusing on plants or herbs, mushrooms, decoctions, and their respective natural products. The available literature on CAMs associated with peripheral nerve regeneration published up to 2020 were retrieved from PubMed, Scopus, and Web of Science. According to current literature, the neuroregenerative potential of Achyranthes bidentata, Astragalus membranaceus, Curcuma longa, Panax ginseng, and Hericium erinaceus are the most widely studied. Various CAMs enhanced proliferation and migration of Schwann cells in vitro, primarily through activation of MAPK pathway and FGF-2 signaling, respectively. Animal studies demonstrated the ability of CAMs to promote peripheral nerve regeneration and functional recovery, which are partially associated with modulations of neurotrophic factors, pro-inflammatory cytokines, and anti-apoptotic signaling. This systematic review provides evidence for the potential use of CAMs in the management of peripheral nerve injury.
Introduction: Acanthamoeba is a ubiquitous and parasitic protozoan capable of causing serious human infections, resulting in blindness and even death. Seaweeds are abundant and widely known for their antimicrobial properties. This study aims to unveil the anti-amoebic potential of two Malaysian red seaweeds, Gracilaria changii and Gracilaria salicornia on Acanthamoeba castellanii. Methods: Water, methanol and ethyl acetate extracts of G. changii and G. salicornia were tested against A. castellanii. Liquid chromatography-mass spectrometry (LC-MS) analysis was carried out to identify the compounds responsible for the anti-amoebic effect. Results: Methanol extract of G. salicornia showed a significant growth inhibition of 22 % in A. castellanii trophozoites. Cytotoxicity of these extracts were shown to be minimal in human keratinocyte cells through cell viability assay. Conclusion: Data from LC-MS revealed fourteen compounds with reported biological activities. These findings suggest the use of G. changii and G. salicornia as potential sources of anti-amoebic compounds.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.