Abstract. Mushawwir A, Arifin J, Darwis D, Puspitasari T, Pengerteni DS, Nuryanthi N, Perman R. 2020. Liver metabolic activities of Pasundan cattle induced by irradiated chitosan. Biodiversitas 21: 5571-5578. A total of one hundred and twenty-five, 2-3 year old male Pasundan cattle were used as livestock samples during the three months of this research. They were selected from the local cattle breeding and development center in Ciamis. The animal samples were randomly allocated to 5 treatment groups. One group served as the control, or without irradiated chitosan, while the others were used as treatment in varying levels. Each treatment group involved five replicates with 25 Pasundan bulls per treatment i.e five Pasundan bulls per replication. Each group was provided with the following rations: C0 = Control group, without IC (0 ppm IC); C1 = 350 ppm Irradiated Chitosan (IC); C2 = 400 ppm IC; C3 = 450 ppm IC; and C4 = 500 ppm IC. Irradiated chitosan was obtained through the following steps: extraction, deacetylation, and irradiation of chitin using gamma rays. Five mL of blood samples were collected from each bull at the beginning of each month of this experiment, which totaled three months. The blood samples were sucked from the tail/coccygeal vein using a sterilized syringe and vacuum tube containing K3EDTA. The plasma was used to determine the concentration of parameters related to liver metabolism through an automatic biochemical analyzer Kenza 240TX model from Biolabo, using a commercial kit. Each procedure was followed based on the Biolabo kit (Franch) and Randox kit (UK). This study showed that IC reduces the activity of glycogenolysis and glycolysis, but is accompanied by improvements in the biochemical conditions of liver cells. This is a favorable condition for the metabolism of Pasundan bulls in order to enhance their growth and reproduction.
This experiment explores the effect and optimal levels of irradiated Chitosan (IrC) in the diet on lipogenesis and its effect on the blood lipid profile of the Sentul Chickens starter phase. The IrC was generated from shrimp waste chitin, and in addition to being a feed supplement, it has the potential to reduce environmental pollution. Furthermore, Sentul chickens were 100 samples, reared from 0-8 weeks, and the observed variables included triglyceride, cholesterol, and blood Non-Esterified Fatty Acid (NEFA). A completely randomized design (CRD) experimental method was used with four treatments and five replications. The treatments were K0 = basal diet without IrC, K1 = 300 ppm IrC in basal diet, K2 = 350 ppm IrC in basal diet, K3 = 400 ppm IrC in the basal diet. Meanwhile, the samples used for analysis were 40 individuals from the research object based on the average body weight of the population. The results showed that the provision of rations containing IrC (K1) 300 ppm, (K2) 350 ppm, and (K3) 400 ppm had a significant effect (P<0.05) on triglyceride, cholesterol, and NEFA profile in Sentul Chickens blood of the starter phase.
Recycled polypropylene (RPP) and lignin represent by-products produced in enormous amounts worldwide that remain underutilized. This study used rice straw lignin as a filler at various concentrations (0% to 70% w/w) in RPP and virgin polypropylene (PP) composites by melt blending. Structural and morphological alterations of lignin were analyzed by Fourier transform infrared (FTIR) spectroscopy and scanning electron microscopy (SEM), respectively. Mechanical properties were evaluated using a universal testing machine (UTM). Results revealed that the tensile strength of the composites decreased as the lignin content increased, presumably due to the low of compatibility degree of lignin and MAPP, as well as the crack formation due to the agglomeration of lignin. However, composites with lignin as a filler showed higher moduli and water absorption capacities, as well as thickness swelling; using lignin as a filler caused a drastic reduction of the elongation at break values. The results indicated that the physical and mechanical properties of RPP and its virgin PP composites had no substantial differences. This indicated that virgin PP could be substituted by recycled polypropylene (RPP) for composite applications with the addition of MAPP.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.