A conserved hairpin-like structure comprised of a signal peptide and early mature region initiates protein transport across the SecY or Sec61α channel in Bacteria or Archaea and Eukarya, respectively. When and how this initiator substrate hairpin forms remains a mystery. Here, we have used the bacterial SecA ATPase motor protein and SecYEG channel complex to address this question. Engineering of a functional miniprotein substrate onto the end of SecA allowed us to efficiently form ternary complexes with SecYEG for spectroscopic studies. Förster resonance energy transfer mapping of key residues within this ternary complex demonstrates that the protein substrate adopts a hairpin-like structure immediately adjacent to the SecA two-helix finger subdomain before channel entry. Comparison of ADP and ATP-γS-bound states shows that the signal peptide partially inserts into the SecY channel in the latter state. Our study defines a unique preinsertion intermediate state where the SecA two-helix finger appears to play a role in both templating the substrate hairpin at the channel entrance and promoting its subsequent ATP-dependent insertion.protein transport | FRET mapping | Sec system
The bacterial Sec-dependent system is the major protein-biogenic pathway for protein secretion across the cytoplasmic membrane or insertion of integral membrane proteins into the phospholipid bilayer. The mechanism of SecA-driven protein transport across the SecYEG channel complex has remained controversial with conflicting claims from biochemical and structural studies regarding the depth and extent of SecA insertion into SecYEG during ongoing protein transport. Here we utilized site-specific photo-crosslinking to thoroughly map SecY regions that are in contact with SecA during its insertion cycle. An arabinose-inducible, rapidly folding OmpA-GFP chimera was utilized to jam the SecYEG channels with an arrested substrate protein to "freeze" them in their SecA-inserted state. Examination of 117 sites distributed throughout SecY indicated that SecA not only interacts extensively with the cytosolic regions of SecY as shown previously, but it also interacts with most of the transmembrane helices and periplasmic regions of SecY, with a clustering of interaction sights around the lateral gate and pore ring regions. Our observations support previous reports of SecA membrane insertion during protein transport as well as those documenting the membrane penetration properties of this protein. They suggest that one or more SecA regions transiently integrate into the heart of the SecY channel complex to span the membrane to promote the protein transport cycle. These findings indicate that high-resolution structural information about the membrane-inserted state of SecA is still lacking and will be critical for elucidating the bacterial protein transport mechanism.
Summary SecA ATPase motor protein plays a central role in bacterial protein transport by binding substrate proteins and the SecY channel complex and utilizing its ATPase activity to drive protein translocation across the plasma membrane. SecA has been shown to exist in a dynamic monomer-dimer equilibrium modulated by translocation ligands, and multiple structural forms of the dimer have been crystallized. Since the structural form of the dimer remains a controversial and unresolved question, we addressed this matter by engineering ρ-benzoylphenylalanine along dimer interfaces corresponding to the five different SecA x-ray structures and assessing their in vivo photo-crosslinking pattern. A discrete anti-parallel 1M6N-like dimer was the dominant if not exclusive dimer found in vivo, whether SecA was cytosolic or in lipid or SecYEG-bound states. SecA bound to a stable translocation intermediate was crosslinked in vivo to a second SecA protomer at its 1M6N interface, suggesting that this specific dimer likely promotes active protein translocation. Taken together, our studies strengthen models that posit, at least in part, a SecA dimer-driven translocation mechanism.
Carrier proteins are considered ''lynchpin'' enzymes of biosynthetic pathways. The E. coli acyl carrier protein (ACP) is composed of multiple alpha helices that form a hydrophobic, solvent-protected pocket that sometimes provides a cavernous hiding spot to protect substrates bound to the ACP's phosphopantetheine (Ppant) arm. The action of ''chain sequestration'' is thought to be important for driving the biosynthetic process. In this study, selected amino acid residues inside the ACP sequestration channel were targeted as possible incorporation sites for para-substituted aromatic nitrile or alkyne vibrational spectroscopic probes. Using stop codon suppression, non-canonical amino acids were incorporated into the ACP via a co-transformed aminoacyl tRNA synthetase. In addition, artificial substrates containing unique vibrational labeling groups like nitriles were covalently ligated to the ACP's Ppant arm. The vibrational frequencies of these labeling groups, measured via IR absorption or Raman scattering, report on mainly the solvent exposure of the CN group, and the lineshape reports the distribution of environments around the label on either the protein or the growing substrate. IR and Raman results that report on the sequestration of substrates of different length, as well as methodological advances that enable this spectroscopic approach, will be discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.