2D SnS2 nanosheets have been attracting intensive attention as one potential candidate for the modern electronic and/or optoelectronic fields. However, the controllable large‐size growth of ultrathin SnS2 nanosheets still remains a great challenge and the photodetectors based on SnS2 nanosheets suffer from low responsivity, thus hindering their further applications so far. Herein, an improved chemical vapor deposition route is provided to synthesize large‐size SnS2 nanosheets, the side length of which can surpass 150 μm. Then, ultrathin SnS2 nanosheet‐based phototransistors are fabricated, which achieve high photoresponsivities up to 261 A W−1 (with a fast rising time of 20 ms and a falling time of 16 ms) in air and 722 A W−1 in vacuum, respectively. Furthermore, the effects of back‐gate voltage and air adsorbates on the optoelectronic properties of the SnS2 nanosheet have been systematically investigated. In addition, a high‐performance flexible photodetector based on SnS2 nanosheet is also fabricated with a high responsivity of 34.6 A W−1.
We report a multilayer solution-processed blue light-emitting diode based on colloidal core/shell CdS/ZnS nanocrystal quantum dots (QDs). At a low-operating voltage of 5.5 V, the device emits spectrally pure blue radiation at 460 nm with a narrow full-width-at-half-maximum bandwidth of 20 nm and high brightness up to 1600 cd/m2. Broad-band, long-wavelength emission from the polymer components and deep traps in the QDs are minimized to less than 5% of the total emission.
As an important component of 2D layered materials (2DLMs), the 2D group IV metal chalcogenides (GIVMCs) have drawn much attention recently due to their earth‐abundant, low‐cost, and environmentally friendly characteristics, thus catering well to the sustainable electronics and optoelectronics applications. In this instructive review, the booming research advancements of 2D GIVMCs in the last few years have been presented. First, the unique crystal and electronic structures are introduced, suggesting novel physical properties. Then the various methods adopted for synthesis of 2D GIVMCs are summarized such as mechanical exfoliation, solvothermal method, and vapor deposition. Furthermore, the review focuses on the applications in field effect transistors and photodetectors based on 2D GIVMCs, and extends to flexible devices. Additionally, the 2D GIVMCs based ternary alloys and heterostructures have also been presented, as well as the applications in electronics and optoelectronics. Finally, the conclusion and outlook have also been presented in the end of the review.
Multielemental systems enable the use of multiple degrees of freedom for control of physical properties by means of stoichiometric variation. This has attracted extremely high interest in the field of 2D optoelectronics in recent years. Here, for the first time, multilayer 2D ternary Ta2NiSe5 flakes are successfully fabricated using a mechanical exfoliation method from chemical vapor transport synthesized high quality bulk and the optoelectronic properties are systematically investigated. Importantly, a high responsivity of 17.21 A W−1 and high external quantum efficiency of 2645% are recorded from an as‐fabricated photodetector at room temperature in air; this is superior to most other 2D materials‐based photodetectors that have been reported. More intriguingly, a usual sublinear and an unusual superlinear light‐intensity‐dependent photocurrent are observed under air and vacuum, respectively. These excellent and special properties make multilayer ternary Ta2NiSe5 a highly competitive candidate for future infrared optoelectronic applications and an interesting platform for photophysics studies.
As a promising candidate for optoelectronics, one-dimensional CdS nanostructures have drawn great scientific and technical interest due to their interesting fundamental properties and possibilities of utilization in novel promising optoelectronical devices with augmented performance and functionalities. This progress report highlights a selection of important topics pertinent to optoelectronical applications of one-dimensional CdS nanostructures over the last five years. This article begins with the description of rational design and controlled synthesis of CdS nanostructure arrays, alloyed nanostructucures and kinked nanowire superstructures, and then focuses on the optoelectronical properties, and applications including cathodoluminescence, lasers, light-emitting diodes, waveguides, field emitters, logic circuits, memory devices, photodetectors, gas sensors, photovoltaics and photoelectrochemistry. Finally, the general challenges and the potential future directions of this exciting area of research are highlighted.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.