The comfortable, continuous monitoring of vital parameters is still a challenge. The long-term measurement of respiration and cardiovascular signals is required to diagnose cardiovascular and respiratory diseases. Similarly, sleep quality assessment and the recovery period following acute treatments require long-term vital parameter datalogging. To address these requirements, we have developed “VitalCore”, a wearable continuous vital parameter monitoring device in the form of a T-shirt targeting the uninterrupted monitoring of respiration, pulse, and actigraphy. VitalCore uses polymer-based stretchable resistive bands as the primary sensor to capture breathing and pulse patterns from chest expansion. The carbon black-impregnated polymer is implemented in a U-shaped configuration and attached to the T-shirt with “interfacing” material along with the accompanying electronics. In this paper, VitalCore is bench tested and compared to gold standard respiration and pulse measurements to verify its functionality and further to assess the quality of data captured during sleep and during light exercise (walking). We show that these polymer-based sensors could identify respiratory peaks with a sensitivity of 99.44%, precision of 96.23%, and false-negative rate of 0.557% during sleep. We also show that this T-shirt configuration allows the wearer to sleep in all sleeping positions with a negligible difference of data quality. The device was also able to capture breathing during gait with 88.9–100% accuracy in respiratory peak detection.
Triage is the first interaction between a patient and a nurse/paramedic. This assessment, usually performed at Emergency departments, is a highly dynamic process and there are international grading systems that according to the patient condition initiate the patient journey. Triage requires an initial rapid assessment followed by routine checks of the patients’ vitals, including respiratory rate, temperature, and pulse rate. Ideally, these checks should be performed continuously and remotely to reduce the workload on triage nurses; optimizing tools and monitoring systems can be introduced and include a wearable patient monitoring system that is not at the expense of the patient’s comfort and can be remotely monitored through wireless connectivity. In this study, we assessed the suitability of a small ceramic piezoelectric disk submerged in a skin-safe silicone dome that enhances contact with skin, to detect wirelessly both respiration and cardiac events at several positions on the human body. For the purposes of this evaluation, we fitted the sensor with a respiratory belt as well as a single lead ECG, all acquired simultaneously. To complete Triage parameter collection, we also included a medical-grade contact thermometer. Performances of cardiac and respiratory events detection were assessed. The instantaneous heart and respiratory rates provided by the proposed sensor, the ECG and the respiratory belt were compared via statistical analyses. In all considered sensor positions, very high performances were achieved for the detection of both cardiac and respiratory events, except for the wrist, which provided lower performances for respiratory rates. These promising yet preliminary results suggest the proposed wireless sensor could be used as a wearable, hands-free monitoring device for triage assessment within emergency departments. Further tests are foreseen to assess sensor performances in real operating environments.
Background An anticipated surge in mental health service demand related to COVID-19 has motivated the use of novel methods of care to meet demand, given workforce limitations. Digital health technologies in the form of self-tracking technology have been identified as a potential avenue, provided sufficient evidence exists to support their effectiveness in mental health contexts. Objective This literature review aims to identify current and potential physiological or physiologically related monitoring capabilities of the Apple Watch relevant to mental health monitoring and examine the accuracy and validation status of these measures and their implications for mental health treatment. Methods A literature review was conducted from June 2021 to July 2021 of both published and gray literature pertaining to the Apple Watch, mental health, and physiology. The literature review identified studies validating the sensor capabilities of the Apple Watch. Results A total of 5583 paper titles were identified, with 115 (2.06%) reviewed in full. Of these 115 papers, 19 (16.5%) were related to Apple Watch validation or comparison studies. Most studies showed that the Apple Watch could measure heart rate acceptably with increased errors in case of movement. Accurate energy expenditure measurements are difficult for most wearables, with the Apple Watch generally providing the best results compared with peers, despite overestimation. Heart rate variability measurements were found to have gaps in data but were able to detect mild mental stress. Activity monitoring with step counting showed good agreement, although wheelchair use was found to be prone to overestimation and poor performance on overground tasks. Atrial fibrillation detection showed mixed results, in part because of a high inconclusive result rate, but may be useful for ongoing monitoring. No studies recorded validation of the Sleep app feature; however, accelerometer-based sleep monitoring showed high accuracy and sensitivity in detecting sleep. Conclusions The results are encouraging regarding the application of the Apple Watch in mental health, particularly as heart rate variability is a key indicator of changes in both physical and emotional states. Particular benefits may be derived through avoidance of recall bias and collection of supporting ecological context data. However, a lack of methodologically robust and replicated evidence of user benefit, a supportive health economic analysis, and concerns about personal health information remain key factors that must be addressed to enable broader uptake.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.