Background and Purpose-Experimental studies provide evidence of an association between ischemic stroke and increased oxidative stress, but data in humans are still limited and controversial. The purpose of this study was to investigate the time course of plasma antioxidant changes in ischemic stroke patients. Methods-Plasma antioxidants, including water-soluble (vitamin C and uric acid) and lipid-soluble (vitamins A and E) compounds as well as antioxidant enzyme activities in plasma (superoxide dismutase [SOD] and glutathione peroxidase) and erythrocytes (SOD), were measured by high-performance liquid chromatography (antioxidant vitamins) and by spectrophotometry (antioxidant enzymes) in 38 subjects (25 men and 13 women aged 77.2Ϯ7.9 years) with acute ischemic stroke of recent onset (Ͻ24 hours) on admission, after 6 and 24 hours, and on days 3, 5, and 7. Antioxidant levels in patients on admission were compared with those of age-and sex-matched controls. Results-Mean antioxidant levels and activities in patients on admission were lower than those of controls and showed a gradual increase over time. Patients with the worst early outcome (death or functional decline) had higher vitamin A and uric acid plasma levels and lower vitamin C levels and erythrocyte SOD activity than those who remained functionally stable. Conclusions-These results suggest that the majority of antioxidants are reduced immediately after an acute ischemic stroke, possibly as a consequence of increased oxidative stress. A specific antioxidant profile is associated with a poor early outcome. (Stroke. 2000;31:2295-2300.)
Markers of oxidative damage are increased in AD and correlate with decreased levels of plasma antioxidants. These findings suggest that lymphocyte DNA 8-OHdG content in patients with AD reflects a condition of increased oxidative stress related to a poor antioxidant status.
Our results support that AD is affected by oxidative stress, detectable not only in the brain but also in peripheral cells; oxidative mechanisms may contribute to the pathogenesis of AD. Additional studies in other neurodegenerative diseases are needed to evaluate these findings.
A condition of oxidative stress is known to occur in ischemic stroke, the current therapeutic intervention of which is largely limited to thrombolysis. To assess the effect of vitamin C - in conjunction to aspirin - in ischemic stroke-related lipid peroxidation, we measured plasma levels of ascorbate, of 8,12-isoprostanes F2alpha-VI (8,12-iPF2alpha-VI) and activities and levels of a broad spectrum of antioxidant enzymes and micronutrients in stroke patients randomized to receive, from stroke onset and up to three months, either vitamin C (200 mg/day) plus aspirin (300 mg/day) or only aspirin (300 mg/day). By the end of the first week, patients treated with vitamin C plus aspirin had higher vitamin C levels (p = 0.02) and lower 8,12-iPF2alpha-VI levels (p = 0.01) than patients treated with aspirin alone. The significance was maintained for the increase of vitamin C after three months of therapy (p < 0.01). The clinical functional outcome for both groups of patients similarly ameliorated after three months of treatment. We conclude that vitamin C, at the dose of 200 mg/day and in conjunction with aspirin, significantly decreases ischemic stroke-related lipid peroxidation in humans. Further studies are warranted to clarify whether the use of vitamin C may add clinical long-term beneficial effects in patients with stroke.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.