We provide a database of the coseismic geological surface effects following the Mw 6.5 Norcia earthquake that hit central Italy on 30 October 2016. This was one of the strongest seismic events to occur in Europe in the past thirty years, causing complex surface ruptures over an area of >400 km2. The database originated from the collaboration of several European teams (Open EMERGEO Working Group; about 130 researchers) coordinated by the Istituto Nazionale di Geofisica e Vulcanologia. The observations were collected by performing detailed field surveys in the epicentral region in order to describe the geometry and kinematics of surface faulting, and subsequently of landslides and other secondary coseismic effects. The resulting database consists of homogeneous georeferenced records identifying 7323 observation points, each of which contains 18 numeric and string fields of relevant information. This database will impact future earthquake studies focused on modelling of the seismic processes in active extensional settings, updating probabilistic estimates of slip distribution, and assessing the hazard of surface faulting.
Fluid flow through a single fracture is traditionally described by the cubic law, which is derived from the Navier-Stokes equation for the flow of an incompressible fluid between two smooth-parallel plates. Thus, the permeability of a single fracture depends only on the so-called hydraulic aperture which differs from the mechanical aperture (separation between the two fracture wall surfaces). This difference is mainly related to the roughness of the fracture walls, which has been evaluated in previous works by including a friction factor in the permeability equation or directly deriving the hydraulic aperture. However, these methodologies may lack adequate precision to provide valid results. This work presents a complete protocol for fracture surface mapping, roughness evaluation, fracture modeling, fluid flow simulation, and permeability estimation of individual fracture (open or sheared joint/pressure solution seam). The methodology includes laboratory-based high-resolution structure from motion (SfM) photogrammetry of fracture surfaces, power spectral density (PSD) surface evaluation, synthetic fracture modeling, and fluid flow simulation using the Lattice-Boltzmann method. This work evaluates the respective controls on permeability exerted by the fracture displacement (perpendicular and parallel to the fracture walls), surface roughness, and surface pair mismatch. The results may contribute to defining a more accurate equation of hydraulic aperture and permeability of single fractures, which represents a pillar for the modeling and upscaling of the hydraulic properties of a geofluid reservoir.
In the last decade central Italy was struck by devastating seismic sequences resulting in hundreds of casualties (i.e., 2009-L′Aquila moment magnitude [Mw] = 6.3, and 2016-Amatrice-Visso-Norcia Mw max = 6.5). These seismic events were caused by two NW-SE−striking, SW-dipping, seismogenic normal faults that were modeled based on the available focal mechanisms and the seismic moment computed during the relative mainshocks. The seismogenic faults responsible for the 2009-L′Aquila Mw = 6.3 (Paganica Fault—PF) and 2016-Amatrice-Visso-Norcia Mw max = 6.5 (Monte Vettore Fault—MVF) are right-stepping with a negative overlap (i.e., underlap) located at the surface in the Campotosto area. This latter was affected by seismic swarms with magnitude ranging from 5.0 to 5.5 during the 2009 seismic sequence and then in 2017 (i.e., a few months later than the mainshocks related with the 2016 seismic sequence). In this paper, the seismogenic faults related to the main seismic events that occurred in the Campotosto Seismic Zone (CSZ) were modeled and interpreted as a linkage fault zone between the PF and MVF interacting seismogenic faults. Based on the underlap dimension, the seismogenic potential of the CSZ is in the order of Mw = 6.0, even in the case that all the faults belonging to the zone were activated simultaneously. This has important implications for seismic hazard assessment in an area dominated by the occurrence of a major NW-SE−striking extensional structure, i.e., the Monte Gorzano Fault (MGF). Mainly due to its geomorphologic expression, this fault has been considered as an active and silent structure (therefore representing a seismic gap) able to generate an earthquake of Mw max = 6.5−7.0. However, the geological evidence provided with this study suggests that the MGF is of early (i.e., pre- to syn-thrusting) origin. Therefore, the evaluation of the seismic hazard in the Campotosto area should not be based on the geometrical characteristics of the outcropping MGF. This also generates substantial issues with earthquake geological studies carried out prior to the recent seismic events in central Italy. More in general, the 4-D high-resolution image of a crustal volume hosting an active linkage zone between two large seismogenic structures provides new insights into the behavior of interacting faults in the incipient stages of connection.
We provide here a first-hand description of the coseismic surface effects caused by the Mw 6.4 Petrinja earthquake that hit central Croatia on 29 December 2020. This was one of the strongest seismic events that occurred in Croatia in the last two centuries. Field surveys in the epicentral area allowed us to observe and map primary coseismic effects, including geometry and kinematics of surface faulting, as well as secondary effects, such as liquefaction, sinkholes and landslides. The resulting dataset consists of homogeneous georeferenced records identifying 222 observation points, each of which contains a minimum of 5 to a maximum of 14 numeric and string fields of relevant information. The earthquake caused surface faulting defining a typical ‘conjugate’ fault pattern characterized by Y and X shears, tension cracks (T fractures), and compression structures (P shears) within a ca. 10 km wide (across strike), NW–SE striking right-lateral strike-slip shear zone (i.e., the Petrinja Fault Zone, PFZ). We believe that the results of the field survey provide fundamental information to improve the interpretation of seismological, GPS and InSAR data of this earthquake. Moreover, the data related to the surface faulting may impact future studies focused on earthquake processes in active strike-slip settings, integrating the estimates of slip amount and distribution in assessing the hazard associated with capable transcurrent faults.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.