We consider a model for scheduling under uncertainty. In this model, we combine the main characteristics of online and stochastic scheduling in a simple and natural way. Job processing times are assumed to be stochastic, but in contrast to traditional stochastic scheduling models, we assume that jobs arrive online, and there is no knowledge about the jobs that will arrive in the future. The model incorporates both stochastic scheduling and online scheduling as a special case. The particular setting we consider is nonpreemptive parallel machine scheduling, with the objective to minimize the total weighted completion times of jobs. We analyze simple, combinatorial online scheduling policies for that model, and derive performance guarantees that match performance guarantees previously known for stochastic and online parallel machine scheduling, respectively. For processing times that follow new better than used in expectation (NBUE) distributions, we improve upon previously best-known performance bounds from stochastic scheduling, even though we consider a more general setting.
published version features the final layout of the paper including the volume, issue and page numbers. Link to publication General rightsCopyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.• Users may download and print one copy of any publication from the public portal for the purpose of private study or research. • You may not further distribute the material or use it for any profit-making activity or commercial gain • You may freely distribute the URL identifying the publication in the public portal.If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the "Taverne" license above, please follow below link for the End User
Increasing interest has recently been shown in analyzing the worst-case behavior of local search algorithms. In particular, the quality of local optima and the time needed to find the local optima by the simplest form of local search has been studied. This paper deals with worst-case performance of local search algorithms for makespan minimization on parallel machines. We analyze the quality of the local optima obtained by iterative improvement over the jump, swap, multi-exchange, and the newly defined push neighborhoods. Finally, for the jump neighborhood we provide bounds on the number of local search steps required to find a local optimum.
Increasing interest has recently been shown in analyzing the worst-case behavior of local search algorithms. In particular, the quality of local optima and the time needed to find the local optima by the simplest form of local search has been studied. This paper deals with worst-case performance of local search algorithms for makespan minimization on parallel machines. We analyze the quality of the local optima obtained by iterative improvement over the jump, swap, multi-exchange, and the newly defined push neighborhoods. Finally, for the jump neighborhood we provide bounds on the number of local search steps required to find a local optimum.
The classic prophet inequality states that, when faced with a finite sequence of non-negative independent random variables, a gambler who knows their distribution and is allowed to stop the sequence at any time, can obtain, in expectation, at least half as much reward as a prophet who knows the values of each random variable and can choose the largest one. Following this classic theorem from the 70s, many results have been obtained for several related optimal stopping problems. Moreover, the recently uncovered connection between prophet inequalities and posted price mechanisms, has given the area a new surge. We survey some new developments and highlight some compelling open problems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.