BackgroundIt is unclear if anaesthesia maintenance with propofol is advantageous or beneficial over inhalational agents. This study is intended to compare the effects of propofol vs. inhalational agents in maintaining general anaesthesia on patient-relevant outcomes and patient satisfaction.MethodsStudies were identified by electronic database searches in PubMed™, EMBASE™ and the Cochrane™ library between 01/01/1985 and 01/08/2016. Randomized controlled trials (RCTs) of peer-reviewed journals were studied. Of 6688 studies identified, 229 RCTs were included with a total of 20,991 patients. Quality control, assessment of risk of bias, meta-bias, meta-regression and certainty in evidence were performed according to Cochrane. Common estimates were derived from fixed or random-effects models depending on the presence of heterogeneity. Post-operative nausea and vomiting (PONV) was the primary outcome. Post-operative pain, emergence agitation, time to recovery, hospital length of stay, post-anaesthetic shivering and haemodynamic instability were considered key secondary outcomes.ResultsThe risk for PONV was lower with propofol than with inhalational agents (relative risk (RR) 0.61 [0.53, 0.69], p < 0.00001). Additionally, pain score after extubation and time in the post-operative anaesthesia care unit (PACU) were reduced with propofol (mean difference (MD) − 0.51 [− 0.81, − 0.20], p = 0.001; MD − 2.91 min [− 5.47, − 0.35], p = 0.03). In turn, time to respiratory recovery and tracheal extubation were longer with propofol than with inhalational agents (MD 0.82 min [0.20, 1.45], p = 0.01; MD 0.70 min [0.03, 1.38], p = 0.04, respectively). Notably, patient satisfaction, as reported by the number of satisfied patients and scores, was higher with propofol (RR 1.06 [1.01, 1.10], p = 0.02; MD 0.13 [0.00, 0.26], p = 0.05). Secondary analyses supported the primary results.ConclusionsBased on the present meta-analysis there are several advantages of anaesthesia maintenance with propofol over inhalational agents. While these benefits result in an increased patient satisfaction, the clinical and economic relevance of these findings still need to be addressed in adequately powered prospective clinical trials.Electronic supplementary materialThe online version of this article (10.1186/s12871-018-0632-3) contains supplementary material, which is available to authorized users.
HBV infection in uPA/SCID chimeric mice is highly dynamic despite the absence of an adaptive immune response. Serum HBV t in humanized uPA/SCID mice was estimated to be ∼1 hour regardless of inoculum size. The HBV acute infection kinetics presented here is an important step in characterizing this experimental model system so that it can be effectively used to elucidate the dynamics of the HBV life cycle and thus possibly reveal effective antiviral drug targets. (Hepatology 2018).
These findings prove the predictive sensitivity of GGT as an independent indicator of nonresponsiveness even at levels that are slightly above the normal range. This new predictive parameter may help to improve individualized therapy in HCV type-1 infection.
Whereas the mode of action of lamivudine (LAM) against hepatitis B virus (HBV) is well established, the inhibition mechanism(s) of interferon-α are less completely defined. To advance our understanding, we mathematically modelled HBV kinetics during 14-day pegylated interferon-α-2a (pegIFN), LAM or pegIFN+LAM treatment of 39 chronically HBV-infected humanized uPA/SCID chimeric mice. Serum HBV DNA and intracellular HBV DNA were measured frequently. We developed a multicompartmental mathematical model and simultaneously fit it to the serum and intracellular HBV DNA data. Unexpectedly, even in the absence of an adaptive-immune response, a biphasic decline in serum HBV DNA and intracellular HBV DNA was observed in response to all treatments. Kinetic analysis and modeling indicate that the 1st phase represents inhibition of intracellular HBV DNA synthesis and secretion which was similar under all treatments with overall mean efficacy of 98%. In contrast, there were distinct differences in HBV decline during the 2nd phase which was accounted for in the model by a time-dependent inhibition of intracellular HBV DNA synthesis with the steepest decline observed during pegIFN + LAM (1.28/d) and the slowest (0.1/d) during pegIFN monotherapy. Reminiscent of observations in patients treated with pegIFN and/or LAM, a biphasic HBV decline was observed in treated humanized mice in the absence of adaptive immune response. Interestingly, combination treatment does not increase the initial inhibition of HBV production, but rather enhanced 2nd phase decline providing insight into the dynamics of HBV treatment response and the mode of action of interferon-α against HBV. Importance Chronic hepatitis B virus (HBV) infection remains a global health care problem as we lack sufficient curative treatment options. Elucidating the dynamics of HBV infection and treatment response at the molecular level could facilitate the development of novel, more effective HBV antivirals. Currently, the only well-established small animal HBV infection model available is the chimeric uPA/SCID mice with humanized livers; however, the HBV inhibition kinetics under pegylated interferon-α (pegIFN) in this model system have not been determined in sufficient detail. In this study, viral kinetics in 39 humanized mice treated with pegIFN and/or lamivudine were monitored and analyzed using a mathematical-modelling approach. We found that the main mode of action of interferon-α is blocking HBV DNA synthesis and that the majority of synthesized HBV DNA is secreted. Our study provides novel insights into HBV DNA dynamics within infected human hepatocytes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.