Cajal bodies (CBs) are subnuclear bodies that are widespread in eukaryotes, being found in mammals, many other vertebrates and in all plant species so far examined. They are mobile structures, moving, fusing, and budding within the nucleus. Here we describe a screen for Arabidopsis mutants with altered CBs and describe mutants that have smaller Cajal bodies (ncb-2, ncb-3), lack them altogether (ncb-1), have increased numbers of CBs (pcb) or have flattened CBs (ccb). We have identified the gene affected in the ncb mutants as a distant homolog of the vertebrate gene that encodes coilin (At1g13030) and have termed the resulting protein Atcoilin. A T-DNA insertional mutant in this gene (ncb-4) also lacks Cajal bodies. Overexpression of Atcoilin cDNA in ncb-1 restores Cajal bodies, which recruit U2B؆ as in the wild type, but which are, however, much larger than in the wild type. Thus we have shown that At1g13030 is required for Cajal body formation in Arabidopsis, and we hypothesize that the level of its expression is correlated with Cajal body size. The Atcoilin gene is unaffected in pcb and ccb, suggesting that other genes can also affect CBs.
Pseudomonas chlororaphis PCL1391 produces the secondary metabolite phenazine-1-carboxamide (PCN), which is an antifungal metabolite required for biocontrol activity of the strain. Identification of conditions involved in PCN production showed that some carbon sources and all amino acids tested promote PCN levels. Decreasing the pH from 7 to 6 or decreasing the growth temperature from 21 to 16 degrees C decreased PCN production dramatically. In contrast, growth at 1% oxygen as well as low magnesium concentrations increased PCN levels. Salt stress, low concentrations of ferric iron, phosphate, sulfate, and ammonium ions reduced PCN levels. Fusaric acid, a secondary metabolite produced by the soilborne Fusarium spp. fungi, also reduced PCN levels. Different nitrogen sources greatly influenced PCN levels. Analysis of autoinducer levels at conditions of high and low PCN production demonstrated that, under all tested conditions, PCN levels correlate with autoinducer levels, indicating that the regulation of PCN production by environmental factors takes place at or before autoinducer production. Moreover, the results show that autoinducer production not only is induced by a high optical density but also can be induced by certain environmental conditions. We discuss our findings in relation to the success of biocontrol in the field.
Production of the secondary metabolite phenazine-1-carboxamide (PCN) by Pseudomonas chlororaphis PCL1391 is crucial for biocontrol activity against the phytopathogen Fusarium oxysporum f. sp. radicis lycopersici on tomato. Regulation of PCN production involves the two-component signalling system GacS/GacA, the quorum-sensing system PhzI/PhzR and the regulator PsrA. This paper reports that a functional rpoS is required for optimal PCN and N-hexanoyl-l-homoserine lactone (C6-HSL) production. Constitutive expression of rpoS is able to complement partially the defect of a psrA mutant for PCN and N-acylhomoserine lactone production. Western blotting shows that rpoS is regulated by gacS. Altogether, these results suggest the existence of a cascade consisting of gacS/gacA upstream of psrA and rpoS, which influence expression of phzI/phzR. Overproduction of phzR complements the effects on PCN and C6-HSL production of all mutations tested in the regulatory cascade, which shows that a functional quorum-sensing system is essential and sufficient for PCN synthesis. In addition, the relative amounts of PCN, phenazine-1-carboxylic acid and C6-HSL produced by rpoS and psrA mutants harbouring a constitutively expressed phzR indicate an even more complex network of interactions, probably involving other genes. Preliminary microarray analyses of the transcriptomics of the rpoS and psrA mutants support the model of regulation described in this study and allow identification of new genes that might be involved in secondary metabolism.
Production of the antifungal metabolite phenazine-1-carboxamide (PCN) by Pseudomonas chlororaphis strain PCL1391 is essential for the suppression of tomato foot and root rot caused by the soil-borne fungus F. oxysporum f. sp. radicis-lycopersici. The authors have shown previously that fusaric acid (FA), a phytotoxin produced by Fusarium oxysporum, represses the production of PCN and of the quorum-sensing signal N-hexanoyl-L-homoserine lactone (C 6 -HSL). Here they report that PCN repression by FA is maintained even during PCN-stimulating environmental conditions such as additional phenylalanine, additional ferric iron and a low Mg 2+ concentration. Constitutive expression of phzI or phzR increases the production of C 6 -HSL and abolishes the repression of PCN production by FA. Transcriptome analysis using P. chlororaphis PCL1391 microarrays showed that FA represses expression of the phenazine biosynthetic operon (phzABCDEFGH) and of the quorum-sensing regulatory genes phzI and phzR. FA does not alter expression of the PCN regulators gacS, rpoS and psrA. In conclusion, reduction of PCN levels by FA is due to direct or indirect repression of phzR and phzI. Microarray analyses identified genes of which the expression is strongly influenced by FA. Genes highly upregulated by FA are also upregulated by iron starvation in Pseudomonas aeruginosa. This remarkable overlap in the expression profile suggests an overlapping stress response to FA and iron starvation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.