The current paper considers large gallopinglike vibrations of circular cylinders, generically inclined and yawed to the flow. The case of a round section prone to galloping is seemingly a paradox since rotational symmetry (or close to it) and classical galloping are apparently contradictory. Still there seems to be a range of wind speeds far from those for typical Kármán vortex shedding resonance where such a phenomenon does occur. Experimental results from both static and dynamic large-scale rigid cable models, presented here, show that this range coincides with the critical Reynolds number regime, where notable symmetry-breaking characteristics such as nonzero mean lift emerge. It is shown that a fundamental difference between the inclined and non-inclined cylinder aerodynamics may exist accommodating different pressure distributions and different resulting dynamic behaviours. Unsteady pressure measurements showing avalanche-like ''jumps'' and vortex dislocations building between cell structures in the cylinder spanwise direction are conjectured to be a key element in the unstable behaviour experienced.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.