This work presents the numerical analysis and validation of a fixed bed reactor model for 2,3-butanediol (2,3-BDO) dehydration. The 1D heterogeneous reactor model considering interfacial and intra-particle gradients, was simulated and numerical analysis of the model was conducted to understand the characteristics of the reactions in a catalyst along the reactor length. The model was also validated by comparing predicted performance data with pilot-scale plant data operated at 0.2 bar, 299–343 °C and 0.48–2.02 h−1 of weight hourly space velocity (WHSV). The model showed good agreement with the temperature profile, 2,3-BDO conversion and selectivity of target products. In addition, sensitivity analyses of the model were investigated by changing feed flow rate, feed composition, and inlet temperature. It was found that stable and efficient operation conditions are lower than 0.65 h−1 of WHSV and 330–340 °C of inlet temperature. Additionally, the reactor performance was not affected by 2,3-BDO feed concentration above 70%.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.